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Parsing is crucial in nlp

� Syntactic parsing can allow for superior performance
� Machine Translation
� Information Retrieval
� Sentiment Analysis

� Parsing is still far from perfect
� Too slow for web-scale text and not accurate enough

� Incremental nature of shift-reduce parsing allows for new
features that could help improve speed and accuracy
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Combinatory Categorial Grammar (ccg)

� ccg is a lexicalised grammar formalism (Steedman, 2000)
� Each word has a category dictating its behaviour
� Categories are combined using a small set of combinatory rules

� Complex categories are functions that takes a category as an
argument and returns another category

Jack saw money

NP (S\NP)/NP NP
>

S\NP
<

S
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The C&C parser

� The C&C parser (Clark and Curran, 2007) is a state-of-the-art
ccg parser

� Primary focus on speed, accuracy and coverage
� Achieves over 100 sentences/second using the cky algorithm

� Training and testing occur on CCGbank, a corpus of 40,000
annotated sentences (Hockenmaier and Steedman, 2007)

� Parsing pipeline is currently linear – no interaction

DecodingPoS Tagging Supertagging Parsing Scoring
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Supertagging for Efficient ccg Parsing

� Näıvely could apply every possible ccg category to each word
There are 1,286 different ccg categories in CCGbank 02-21

� Supertagging → eliminate unlikely ccg categories
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ccg Supertagging

The horse jumps on the hill

DT NN VBZ IN DT NN

NP/N N (S\NP)/PP ((S\NP)\(S\NP))/NP NP/N N

N/N (S\NP)/NP PP/NP

N (NP\NP)/NP
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ccg Categories used for the Final Parse

The horse jumps on the hill

DT NN VBZ IN DT NN

NP/N N (S\NP)/PP PP/NP NP/N N
> >

NP NP
>

PP
>

S\NP
<

S
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Improving Supertagging

� The supertagger currently receives no data from the parser
� Kummerfeld et al. (2010) adapted the supertagger to the

parser, improving parsing speed significantly

� Optimal: Parser assists supertagger by providing a partial
understanding of the sentence
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Incremental Parsing for Higher Accuracy

� Humans analyse sentences incrementally to assist with
understanding upcoming words (Pickering, 1999; Tanenhaus
and Brown-Schmidt, 2008)

� Incremental parsing allows for a partial derivation to develop
without all words being supplied

� Can perform pos/super tagging decisions when parser already
understands earlier part of sentence → higher accuracy

DecodingPoS Tagging Supertagging Parsing Scoring
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Constituent Parsing using the cky Algorithm

� Cocke-Kasami-Younger (cky) algorithm (Kasami, 1965;
Younger, 1967) is a chart parsing algorithm

� Dynamic programming (DP) over the chart allows efficient
computation but does not allow incremental parsing

2

3

4

5

1

6

Captain      Kirk         saw         the      stellar   explosion

NP/N      N         VP     NP/N     N/N       N  

NP                                          N

NP

S\NP

S

Span

Merity et al. Frontier Pruning for Shift-Reduce ccg Parsing December, 2011



Motivation Background Incremental Parsing Frontier Pruning Conclusion References 11

Shift-Reduce Algorithm

� Shift-reduce algorithm allows for incremental parsing

� Popular for programming language parsing (unambiguous)

� With ambiguous grammars, worst-case is exponential

� Shift-reduce parsing implemented in two ccg parsers:
� Deterministic ccg (Hassan et al., 2008)

Restricted expressive power and low accuracy
� Shift-reduce ccg parser (Zhang and Clark, 2011)

Competitive but aggressive beam pruning for practical speeds

� What if we want to explore the full search space with sr?
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Shift-Reduce Example for ccg

Parsing “Jack saw money”

∅
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Shift-Reduce Example for ccg

Parsing “Jack saw money”

∅ NP (Jack)
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Shift-Reduce Example for ccg

Parsing “Jack saw money”

∅ NP (Jack) (S\NP)/NP (saw)
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Shift-Reduce Example for ccg

Parsing “Jack saw money”

∅ NP (Jack) (S\NP)/NP (saw) NP (money)
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Shift-Reduce Example for ccg

Parsing “Jack saw money”

∅ NP (Jack) S\NP
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Shift-Reduce Example for ccg

Parsing “Jack saw money”

∅ S
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Shift-Reduce → Exponential

∅ A B C D E

Reduction Rules

F ← D E
G ← D E
H ← C D E
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Shift-Reduce → Exponential

∅ A B C D E

∅ A B C F

∅ A B C G

∅ A B H L

Reduction Rules

F ← D E
G ← D E
H ← C D E
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Graph-Structured Stack (gss)

� gss (Tomita, 1988) allows for polynomial shift-reduce parsing
by performing dynamic programming

� Not explored extensively, implemented in only two parsers

� gss has never been implemented for ccg

� Based around three concepts to improve efficiency:
� Splitting
� Combining
� Local Ambiguity Packing
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Graph-Structured Stack (gss)

F

G

∅ A B C D E

H

Reduction Rules

F ← D E
G ← D E
H ← C D E
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Graph-Structured Stack (gss)

F

G

∅ A B C D E I

H

Reduction Rules

F ← D E
G ← D E
H ← C D E
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Graph-Structured Stack (gss)

F

G J

∅ A B C D E I

H

Reduction Rules

J ← F I
J ← G I
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Results for the Graph-Structured Stack in ccg Parsing

� First time a gss for ccg parsing has been implemented
� Polynomial instead of exponential in the worst-case
� gss-based sr and cky algorithms can be compared

Parser Coverage Labeled F-score Speed
(%) (%) (sents/sec)

cky C&C Gold pos 99.34 86.79 96.3
sr C&C Gold pos 99.58 86.78 71.3

cky C&C Auto pos 99.25 84.59 82.0
sr C&C Auto pos 99.50 84.53 61.2

Table: Final evaluation of the cky and sr ccg parsers on Section 23 of
CCGbank (Auto indicates automatically assigned pos tags were used)
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Frontier Features

� As the parser is incremental, we can represent the current
parser state using frontier features

� A frontier is all possible ccg derivations at a given point

∅ NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP

S\NP (NP\NP)/NP (S\NP)\(S\NP)

S S\NP

S

I saw John with binoculars

PRP VBD NNP IN NNS
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Frontier Pruning

� The search space for parsers is massive
� Pruning removes unlikely states from the search space

� Frontier features allow the pruning classifier to better
understand where the partial sentence could lead

� For training, we use unpruned parser output
Identify only the nodes used in the final parse

� During parsing, we discard any unlikely derivations resulting in
improved parsing speed

� The classifier used is an online binary perceptron classifier
� Potential for future work in self training
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Frontier Features for Pruning

∅ NP S\NP (NP\NP)/NP

∅ NP S\NP ((S\NP)\(S\NP))/NP

∅ NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP

S\NP (NP\NP)/NP (S\NP)\(S\NP)

S S\NP

S

I saw John with binoculars

PRP VBD NNP IN NNS
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Features for Frontier Pruning

Feature Type Example

Category S\NP
Binary Composition (S\NP)/NP and NP
Forward Application True

Head Word saw
Head pos VBD

Previous Frontier NP
Next Frontier ((S\NP)\(S\NP))/NP
Next Frontier (NP\NP)/NP

∅ NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP

S\NP (NP\NP)/NP (S\NP)\(S\NP)

S S\NP

S

I saw John with binoculars

PRP VBD NNP IN NNS

Merity et al. Frontier Pruning for Shift-Reduce ccg Parsing December, 2011



Motivation Background Incremental Parsing Frontier Pruning Conclusion References 21

Improving Recall of the Marked Set

� Averaged pruned tree size is 6.7% of original

� Recall of marked set is only 72.9%

� If the marked set is pruned, accuracy may be impacted

� Binary perceptron classifier returns true if w · x > 0

� Improve recall by modifying the threshold level (λ)
w · x > λ

� This trades accuracy for recall by increasing false positives

λλ 0
2 1
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Improving Recall of the Marked Set

Model Coverage lf. uf. Speed
(%) (%) (%) (sents/sec)

cky C&C 99.01 86.37 92.56 55.6
sr C&C 98.90 86.35 92.44 48.6
fp λ = 0 99.01 86.11 92.25 61.1
fp λ = −1 99.06 86.16 92.23 56.4
fp λ = −2 99.01 86.13 92.19 53.9
fp λ = −3 99.06 86.15 92.21 49.0

Table: Development tests on Section 00 of CCGbank
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Results for Frontier Pruning

Parser Coverage Labeled F-score Speed
(%) (%) (sents/sec)

cky C&C 99.34 86.79 96.3
sr C&C 99.58 86.78 71.3
fp sr C&C 99.38 86.51 95.4

cky C&C Auto 99.25 84.59 82.0
sr C&C Auto 99.50 84.53 61.2
fp sr C&C Auto 99.29 84.29 84.9

Table: Final evaluation on Section 23 of CCGbank
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Conclusion

� Developed an incremental shift-reduce ccg parser
� Extended gss to allow for ccg parsing – first time in literature

Worst-case polynomial instead of exponential time
� Allows for comparison between cky and sr algorithms

Shift-reduce parser 34% slower than cky parser

� Incremental parsing allows for novel features
� Frontier pruning improves parsing speed by 39%

Frontier pruned sr parser is slightly faster than cky parser
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Future Work

� Starting point for exploration of frontier features

� Preliminary results show substantial improvements in
supertagging accuracy by providing frontier features

� Integration of pipeline components → increased accuracy

� What other tasks could benefit from direct parser interaction?

DecodingPoS Tagging Supertagging Parsing Scoring
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