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Abstract

Statistical parsers are a crucial tool for understanding and analysing natural language. Many com-

puting applications would benefit from an understanding of the text it is processing. Unfortunately, this

hasn’t been possible due to two primary issues in parsing. First, parsers are too slow for practical appli-

cation on large data sets. The situation becomes worse when applied to real-time applications, such as

speech recognition or predictive text editing. The core algorithm in many parsers, the CKY algorithm,

requires the entire sentence is provided before parsing can begin. For applications where only a fragment

of the input is available, this prevents the use of parsing.

This work demonstrates several novel ideas focused on incremental parsing. The core idea is that

state-of-the-art accuracy should be achievable using incremental parsing with no loss in parsing speed.

This was particularly challenging as full incremental parsing traditionally has an exponential time com-

plexity. To allow for practical incremental parsing, a data structure called a graph-structured stack had

to be implemented for CCG parsing. This allows processing an exponential number of parser deriva-

tions in polynomial time. Additionally, incremental parsing can allow for a tight integration between

parsing components traditionally considered separate by enabling these components to retrieve a partial

understanding of the sentence as it is being parsed. By providing a partial understanding of the sentence

to these other components, we can improve both accuracy and speed across many components in the

parser. This means incremental parsing is not only useful for real-time applications, but can be used to

improve accuracy across the entire parsing pipeline.

By applying the novel features acquired from incremental parsing, we have improved sentence level

accuracy in POS tagging by 3.40% and per token supertagging accuracy by 2.00%. These novel features

were also used in a form of pruning that improved incremental parsing speed by 39%. This work will

lead directly to improvements in a range of Natural Language Processing tasks by enabling a state-of-

the-art high-speed incremental CCG parser.
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CHAPTER 1

Introduction

Parsing is the process of analysing a sentence and extracting its underlying grammatical structure. In ar-

tificial languages, there is usually a guarantee that only one valid interpretation of the structure exists. In

contrast, natural language is inherently ambiguous and multiple valid interpretations of a sentence may

exist. Natural language parsing attempts to resolve these ambiguities, analysing the multiple possible

interpretations of a sentence and returning the most likely interpretation.

Parsing assists in a wide range of tasks in the field of Natural Language Processing, including machine

translation, automatic summarisation, predictive text editing, semantic role labeling and speech recog-

nition. Unfortunately, parsers are traditionally too slow for large-scale use in these applications. For

real-time applications, such as predictive text editing and speech recognition, current parsers cannot be

used at all as they are not incremental. Incremental parsers process a sentence a single word at a time

and can also handle incomplete sentences. Both of these are necessary for speech recognition, for ex-

ample, where speech processing needs to occur whilst the person is speaking or where the sentence is

interrupted.

The aim of this project was to allow for an high-speed incremental CCG parser that can be used to

improve the accuracy in other components in the parsing pipeline. This is achieved by providing a

partial understanding of the sentence being parsed to other components. Traditionally, most systems

separate components and allow for little or no interaction and tightly integrating the parser with other

components in this manner has not previously been explored.

Traditionally, parsing involves a pipeline of components that each are responsible for understanding

a small portion of the sentence. The results of each stage of the pipeline are then passed on to later

components. This prevents incremental parsing, necessary in a number of real-time applications, and

most importantly prevents earlier components in the pipeline from developing a deep understanding of

the sentence being parsed. As early errors in the parsing pipeline can lead to reduced accuracy for all

1
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later components using its output, this is a fundamental issue. A clear need exists for a more integrated

approach to parsing that allows for all components to understand the deep structure of the sentence being

parsed.

1.1 Contributions

1.1.1 Incremental Parsing for the C&C Parser

We extend the high-speed state-of-the-art C&C parser to allow for incremental parsing. As the basis of

our approach, we use the shift-reduce algorithm. As this algorithm has a worst case exponential time

complexity, we enable practical shift-reduce parsing by implementing the first graph-structured stack for

CCG parsing in the literature.

During evaluation, we found our graph-structured stack allowed our incremental parsing implementation

to produce output of near equivalent accuracy with only a 34% speed penalty compared to the traditional

CKY parsing algorithm used in the C&C parser. Even with this speed penalty, the resulting parser is

faster than the majority of constituent parsers in the literature and parses at near state-of-the-art accuracy.

We conclude that with further engineering optimisations, the incremental CCG parser could be directly

competitive against the traditional C&C parser on both speed and accuracy.

1.1.2 Improved POS tagging and Supertagging using Incremental Parsing

Using the new capabilities of incremental parser, we tightly integrate parsing and tagging for improved

accuracy and explore the accuracy impact of errors early in the parsing pipeline. Our core finding is that,

by providing the partial understanding of the sentence that the incremental parser has generated as novel

features, accuracy in components that traditionally do not interact with the parser can be substantially

increased. With these novel features, we improve sentence level POS tagging accuracy by 3.40% and per

token supertagging accuracy by 2.00%. This suggests incremental parsing not only allows for real-time

applications but could improve accuracy across non real-time NLP applications as well.

We also explore the impact that improved accuracy has further on in the parsing pipeline by evaluating

components with and without the earlier accuracy improvements. We show that mistakes early in the

parsing pipeline can result in a substantial loss in accuracy as the error propagates to later components.

We also show that small improvements to the parsing pipeline, such as an accuracy improvement of
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0.21% in per token POS tagging, can result in larger improvements later in the pipeline, such as an

accuracy improvement of 0.69% in per token supertagging.

1.1.3 Frontier Pruning for High-speed Incremental Parsing

We implement a form of pruning that improves parsing speed by using the features produced by the

incremental parser. As the C&C parser is already so efficient, we show that speed improvements can be

difficult to achieve with pruning due to the overhead that pruning introduces. We show that naïve but

constrained feature sets can produce higher parsing speeds that more expressive feature sets as the time

used in processing the more expressive features outweighs the speed benefits of pruning. This insight

will prove useful for other high-speed linguistic parsers.

Frontier pruning allows for a 39% speed improvement for the incremental CCG parser with little impact

on accuracy. This negates the 34% speed loss caused by replacing the CKY algorithm with the shift-

reduce algorithm in the incremental parser and enables the incremental shift-reduce parser to be directly

competitive with the CKY parser on which it is based.

1.2 Outline

Chapter 2 provides an outline of different parsing models, the Combinatory Categorial Grammar for-

malism and the CCGbank corpus. Chapter 3 describes statistical parsing in detail, with focus on the

CKY and shift-reduce parsing algorithms. The graph-structured stack for shift-reduce parsing is also

introduced. Chapter 4 explains the evaluation methodology for our experiments and the theoretical mo-

tivations behind them. Chapter 5 provides a background of the machine learning methods relevant to the

work in this thesis.

Our implementation of both the original shift-reduce algorithm and the graph-structured stack for CCG

parsing is described in Chapter 6. Chapter 7 describes the novel features generated by the incremental

shift-reduce parser that are used to improve accuracy in POS tagging and supertagging, providing moti-

vation behind the use of incremental parsing in non real-time applications. Chapter 8 introduces frontier

pruning which uses the new features from incremental parsing to improve parsing speed. Chapter 9

summarises our work and describes how it impacts on the field of parsing.
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Preliminary work on the shift-reduce algorithm, the graph-structured stack and frontier pruning is to be

published under the title Frontier Pruning for Shift-Reduce CCG Parsing at the Australasian Language

Technology Workshop in December 2011.



CHAPTER 2

Background

2.1 Models of Parsing

Understanding the structure of a sentence is vital as both the words and the structure of a sentence dictate

its semantics, or meaning. Although the sentences (1) and (2) are composed of the same words, they

describe distinctly different actions. Sentence (3) is structurally different to both but in fact has the same

meaning as (2).

(1) The policeman accused the head inspector of corruption.

(2) The head inspector accused the policeman of corruption.

(3) The policeman was the one accused of corruption by the head inspector.

As these examples show, the syntactic structure is necessary to understand the meaning of a sentence,

making naïve textual representations, such as the bag-of-words models used in information retrieval,

inadequate.

Parsing is the process of determining the syntactic structure of a sentence in a given language. The

set of rules and principles that determine the structure of a sentence in a given language is called the

language’s grammar or syntax. Each grammar allows derivations of valid sentences, where a derivation

lists the sequence of rules and actions from the grammar that are required to form a correct analysis of

the sentence. If no valid derivation of a sentence can be found then the sentence is considered ungram-

matical or structurally ill-formed. Notice that a sentence does not need to be semantically valid to be

grammatical, as seen by this oft-quoted sentence from Chomsky (1957):

(4) Colorless green ideas sleep furiously.

5
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S

NP

DT

The

NN

policeman

VP

VB

accused

NP

DT

the

JJ

head

NN

inspector

PP

IN

of

NN

corruption

FIGURE 2.1. A constituent structure tree for sentence (1) with phrasal category labels
in bold.

The two main types of grammar are based on constituent structure and dependency relations.

2.1.1 Constituent Structures

A constituent structure grammar breaks down natural language constructions into constituent parts. Con-

stituents, also referred to as phrases, are groups of adjacent words that function as a single unit within a

sentence. The output of many constituent grammars can be represented as a tree, such as the one seen in

Figure 2.1.

These constituent parts are labeled as either phrasal categories or lexical categories. Phrasal categories

are structures, such as a Noun Phrase (NP) or a Verb Phrase (VP), which are composed of other con-

stituents. These categories can be seen in bold and are the internal nodes of the tree. Lexical categories

correspond to components, such as nouns, verbs, or determiners, that cannot be further decomposed.

These categories are the leaf nodes of the tree.

In each constituent, we identify one element which is known as the head of a phrase. This element

roughly determines the syntactic properties of the phrase and is modified by all other phrasal elements.

For example, the heads of noun phrases and verb phrases are respectively the noun and the verb. In

the constituent “the head inspector”, we mark the inspector as the head as it is modified by the other

elements.

Constituency tests dictate a set of behaviours that constituents must have, including the ability to re-order

and substitute constituents. With substitution or replacement, if you can replace a phrase or clause with a

pronoun (it, he, her, him, . . . ) and the change yields a grammatical sentence where the sentence structure

has not been altered, then the sequence of words tested are a constituent. Sentence (6) demonstrates
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a successful constituent test whilst sentence (5) is ungrammatical. This demonstrates that the whole

sequence “the head inspector” is a constituent functioning as a unit.

(5) The policeman accused the head him of corruption.

(6) The policeman accused him of corruption.

These behaviours are useful for a number of tasks in sub-fields of natural language processing (NLP)

such as machine translation and automatic summarisation. If we were to translate this sentence to

another language, such as Latin, we would have to re-order the constituents. English generally has the

form Subject-Verb-Object whilst Latin has the form Subject-Object-Verb. With constituents, it is trivial

to re-order the constituents from one form to the other:

(7) The policeman the head inspector accused of corruption.

2.1.2 Dependency Relations

Dependency parsing is the process of identifying dependencies or relationships between pairs of words.

Such relationships include subject, object, and modifier relationships and have been variously known as

dependency relations, dependencies, grammatical relations and predicate-argument structures.

In each dependency relation, we identify one word as the head of the relation and the other as the

dependent of the relation. The terminology for head is similar to that found in constituent structures due

to the way that all elements within a constituent are related to the head by dependency relations.

If the grammar permits, the dependency structure may also contain a label for each dependency, indicat-

ing the grammatical function. In Figure 2.2, it is clear that the verb “accused” is linked to “policeman”

(verb’s subject) and “inspector” (verb’s direct object).

Note that these dependency structures can be represented as a graph, with words as nodes and the edges

as the dependencies between words. Applying graph-theoretic constraints on dependency structures can

affect expressivity and parsing efficiency. The tree in Figure 2.2 is projective, for example, meaning that

if we put the words in their linear order, preceded by the root, the edges can be drawn above the words

without crossings. Projectivity in dependency structures is equivalent to the concept of not allowing

crossing branches in a constituency tree. In some cases, a non-projective dependency structure would

be preferable and allow for crossing dependencies. Consider the sentence “Branson demonstrated the
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The policeman accused the head inspector of corruption

det subj
obj

det

mod

mod

det

FIGURE 2.2. A directed graph representing the dependencies in sentence (1), where
subj = subject, obj = object, det = determiner, and mod = modifier relationships.

new plane yesterday which used four jet engines” for example. The word “yesterday” should modify

“demonstrated” but separates “the new plane” from the constituent modifying it. These constructions

are common in languages with flexible word order, such as German, Dutch and Czech.

In many cases, it is possible to derive dependency relations from an existing phrase structure tree. De-

pendency grammars and constituency grammars are strongly equivalent provided the constituency gram-

mar is restricted (Covington, 2001). As many dependency grammars are intended to be theory-neutral,

this introduces the possibility of using dependency relations as a form of cross-formalism evaluation

(Briscoe and Carroll, 2006).

2.1.3 Comparisons between Constituent Structures and Dependency Relations

This thesis focuses on applying a specific algorithm for parsing, the shift-reduce algorithm, to an existing

constituent parser. As most shift-reduce parsers perform dependency parsing, it is worthwhile comparing

the two representations.

A substantial advantage of dependency relations over constituent structures is that there is no need

to build a constituent tree over the sentence. Having a more constrained representation enables both

conceptually simpler implementations and computationally more efficient methods of parsing. When

the constituent structure is not needed for all tasks, dependency relations can be attractive due to the

high-speed dependency parsers available. This is especially true for large-scale systems, where slow

parsing speeds may make the task entirely impractical.

For some NLP tasks, constituent structures are a necessity. This is because dependency relations can lack

important information contained in constituent structures. For example, when translating into different
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languages, statistical machine translation tools use the constituent structure of a sentence to help with

word re-ordering (Charniak et al., 2003; Collins et al., 2005). Constituent structure has also been shown

to be an invaluable feature in semantic role labeling, leading to considerably better performance than

surface-oriented features (Gildea, 2001; Gildea and Palmer, 2002; Chen and Rambow, 2003).

Constituent structure grammars are commonly more deeply motivated by linguistic theory than depen-

dency grammars. As dependency structures have fewer linguistic constraints, theory-neutral dependency

structures can be created. As constituent structure grammars can be converted into dependencies in many

cases, this enables the possibility of using theory-neutral dependencies as a form of cross-formalism

evaluation (Briscoe and Carroll, 2006). Unfortunately, even theory-neutral dependency relations still re-

quire the use of non-trivial mapping schemes. These mappings can have a negative impact on evaluation

by forcing a substantially reduced upper-bound on achievable accuracy in the task (Clark and Curran,

2007b; Cahill et al., 2008).

Annotation of dependency relations is also considered easier and more natural than annotating the equiv-

alent corpus with constituent structure (Nivre and Scholz, 2004), but there have not been detailed studies

on the effectiveness or inter-annotator agreement.

For these reasons, constituent parsers are likely to become progressively less attractive for large-scale

practical systems unless significant improvements to either their performance or accuracy occur.

2.2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (Steedman, 2000), referred to as CCG, is a lexicalised grammar for-

malism that incorporates both constituent structure and dependency relations into its analyses. CCG

was derived from a combination of the original Categorial Grammar (Wood, 1993) and combinatory

logic (Curry and Feys, 1958). The idea of using combinatory logic to understand natural language was

first introduced by Lambek (1958), who eventually formalised these ideas as the Lambek calculus, an

extension of categorial grammars.

CCG is termed a lexicalised grammar as each word is associated with a lexical category that defines how

the word behaves in the sentence. Categories are either atomic (representing stand-alone constituents)

or complex (functions that require other categories in order to produce a grammatical construction).
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Jack saw gold

NP (S\NP)/NP NP
>

S\NP
<

S

FIGURE 2.3. An example CCG derivation using the complex CCG category (S\NP)/NP .

In CCGbank (further described in Section 2.3.2), there are only four atomic categories: S (sentence), N

(noun), NP (noun phrase) and PP (prepositional phrase). Complex categories are represented by X /Y

or X \Y where X and Y are either atomic or complex categories. Y can be considered a necessary

argument in order for the complex category to generate X as a result. The forward and backward

slashes indicate that the argument must be on the right or left respectively.

An example of a complex category is the transitive verb (S\NP)/NP in Figure 2.3. The transitive verb

takes an NP on the right (money) to produce another complex category, S\NP , which then takes an

NP on the left (Jack). The final result is the sentence S .

2.2.1 CCG Combinatory Rules

Since categories encode so much of the grammatical information in CCG, only a few generic rules are

necessary for combining constituents. These rules are termed combinatory rules. The basic combinatory

rules are adopted from the original context-free Categorial Grammar (Bar-Hillel, 1953) but are extended

with additional rules to allow for more complex linguistic phenomena. These additional combinatory

rules increase the grammar’s expressive power from context-free to mildly context-sensitive (Shanker

and Weir, 1994), meaning more complex linguistic structures can be represented.

2.2.1.1 Forward Application and Backward Application

These two functional application rules, termed forward application and backward application, state that

a complex category can be combined with the outermost of its nested arguments to produce the complex

category’s result. They form the basis of Categorial Grammar.

Forward application: X /Y Y ⇒ X

Backward application: Y X \Y ⇒ X
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2.2.1.2 Co-ordination

Co-ordination is handled by the addition of a ternary operator (Φ) to CCG.

Co-ordination: X conj X ⇒Φ X

When two categories of the same type are found to the left and right, they form a single new category

of the same type. This allows for other categories to treat multiple constituents as a single category.

In the example below, the verb “saw” remains unmodified when it maps to additional direct objects as

co-ordination replaces the two CCG categories with a single CCG category representing both of them.

Jack saw gold and silver

NP (S\NP)/NP NP conj NP
<Φ>

NP
>

S\NP
<

S

To convert CCG to a binary branching grammar, co-ordination exists in a modified form in most CCG

parsers and resources. Conjunction is implemented by using a CCG category of the form (X \X )/X

where X is a placeholder and is substituted as needed. In the example below, the derivation above is

represented using the binary branching co-ordination rule. In this case, X becomes NP , producing the

category (NP\NP)/NP .

Jack saw gold and silver

NP (S\NP)/NP NP (NP\NP)/NP NP
>

NP\NP
>

NP
>

S\NP
<

S

2.2.1.3 Type-Raising

Type-raising is used in CCG to convert atomic categories into complex categories.

Forward Type-raising: X ⇒T T/(T\X )

Backward Type-raising: X ⇒T T\(T/X )

Without type-raising, there are many instances in which the co-ordination rule does not behave correctly.

Below the NP category has been raised to a new category S/(S\NP). This category consumes a verb
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of the type S\NP and produces a sentence. As there is only a single direct object for both “saw” and

“stole”, this sentence cannot be represented yet. The rules from the next section are required.

Jack saw and Jill stole gold

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)

2.2.1.4 Composition

In composition, two categories can combine to form a new category if the result of one of them is a

required argument of the other.

Forward composition: X /Y Y /Z ⇒B X /Z

Backward composition: Y \Z X \Y ⇒B X \Z

Forward crossed composition: X /Y Y \Z ⇒B× X \Z

Backward crossed composition: Y /Z X \Y ⇒B× X /Z

This allows us to complete the derivation begun in the previous section. By using forward composition,

we can combine the phrases “Jack saw” and “Jill saw”. Both have CCG categories of S/(S\NP) and

(S\NP)/NP after type-raising the NP . S/(S\NP) requires an S\NP on the right, whilst on the

right (S\NP)/NP will produce an S\NP when an NP is found on the left. By combining these two

functions, we are left with the function S/NP that will produce an S when an NP is found on the right.

Jack saw and Jill stole gold

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
>

S

Thus we can represent the sentence using co-ordination, type-raising and composition.

Certain restrictions have been placed on composition rules in CCG to prevent over-generation. Over-

generation is when a grammar allows for representations of invalid sentences. For example, the sentence

“Jill stole because gold, she is poor” (i.e. “Jill stole gold because she is poor”) is allowed by CCG when

no restrictions are enforced. By disallowing variations of forward crossing composition and backward-

type raising, this over-generation can be prevented.
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The policeman and the inspector found the incriminating tape

NP/N N conj NP/N N (S\NP)/NP NP/N N /N N
> > >

NP NP N
<Φ> >

NP NP
>

(S\NP)
<

S

FIGURE 2.4. A CCG derivation

2.2.2 Spurious Ambiguity in CCG

Although Categorial Grammar is context-free and efficiently parseable, the additional rules introduced

by CCG lead to what is known as spurious ambiguity. This is when even simple sentences can combine

constituents in many different ways but still produce identical dependencies. These redundant deriva-

tions still need to be considered by the parser, resulting in substantially slower parsing. Wittenburg

(1986, 1987) showed that the same categories can be defined in numerous ways due to the flexibility

afforded by both combinatory rules and type-raising. In a specific example, the sentence “I can believe

that she will eat cakes” is shown to produce 469 equivalent derivations. An example of spurious ambi-

guity from the sentence “Jill stole the gold” is shown in Figure 2.5. A parser may need to enumerate an

enormous space of possible derivations for even a trivially short sentence.

To avoid such redundant analyses, Eisner (1996) introduced a set of simple constraints, now called

Eisner constraints, that eliminate spurious ambiguity altogether in CCG without the type-raising rule.

This is achieved by enforcing two simple rules:

(1) The output of right composition may not compose or apply to anything to its right

(2) The output of left composition may not compose or apply to anything to its left

A parse tree or sub-tree that satisfies these constraints is referred to as the normal-form derivation.

The first rule eliminates anything but right branching parses (forward chains such as A/B B/C C ) and

the second rule eliminates anything but left branching parses (backward chains such as A B\A C\B ).

When a single forward or backward chain is insufficient, the two merge. Eisner proves that this removes

all spurious ambiguity in parsers without type-raising and does not remove necessary trees. Even when

type-raising is still used, Eisner constraints have been shown to produce significant speed increases in

CCG parsers by reducing the search space (Clark and Curran, 2004a).
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Jill stole the gold

NP (S\NP)/NP NP/N N
>T >

S/(S\NP) NP
>

S/NP
>

S

Jill stole the gold

NP (S\NP)/NP NP/N N
>T

S/(S\NP)
>B

S/NP
>B

S/N
>

S

Jill stole the gold

NP (S\NP)/NP NP/N N
>B

(S\NP)/N
>

S\NP
<

S

Jill stole the gold

NP (S\NP)/NP NP/N N
>T >B

S/(S\NP) (S\NP )/N
>B

S/N
>

S

Jill stole the gold

NP (S\NP)/NP NP/N N
>T >B

S/(S\NP) (S\NP )/N
>

S\NP
>

S

Jill stole the gold

NP (S\NP)/NP NP/N N
>

NP
>

S\NP
<

S

FIGURE 2.5. An example illustrating spurious ambiguity in CCG for the short sentence
“Jill stole the gold”. All six derivations have the same category assignment, but different
derivation trees.

2.3 Corpora

A corpus is a large and usually structured collection of texts commonly created for the purposes of

linguistic study. They are often annotated to contain additional linguistic information, such as sentence

break locations, the parts-of-speech of words or any other useful structures present in the document.

In NLP, most tasks are dominated by data-driven empirical approaches. Corpora are central to both

evaluating the tools and providing training data for the statistical models.

Banko and Brill (2001) show that the performance of different machine learning algorithms on a given

NLP task perform similarly when given a large enough corpus for training. This implies the more data

available for statistical machine learning, the more accurate the results. As statistical parsers use machine

learning algorithms for many components, it is likely that parsing performance will also improve with

more training data.
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(S (NP-SBJ There)
(VP ’s

(NP-PRD no doubt
(SBAR that

(S (NP-SBJ he)
(VP ’ll

(VP go)))))))

FIGURE 2.6. An example of the Penn Treebank bracketing structure for “There’s no
doubt that he’ll go”. Note the use of the S-expression format from LISP.

Unfortunately, it has been shown that when working on a specific target domain, a large amount of data

from a related but out-of-domain corpus can result in worse performance than a small amount of training

data from the target domain itself (Biber, 1993; Gildea, 2001). This means that the performance of a

parser is strongly related to the genre that the parser is trained and tested against (domain dependence).

As such, it would be optimal to have an extensive, annotated corpus for any domain we may be interested

in parsing. Unfortunately, the annotation speeds recorded during the Penn Treebank project (see Section

2.3.1) demonstrated that this process is both slow and expensive. The recent increase in computing power

and the explosion of available raw text in electronic form have done little to simplify the annotation

process. Thus, the size of the available annotated corpora in NLP are relatively small compared to real

world data.

2.3.1 Penn Treebank

The Penn Treebank (Marcus et al., 1993) project was a substantial multi-year endeavour to develop a

large, annotated corpus for use in corpus linguistics. The first release contained around 2.9 million words

of text annotated with constituent structure trees (see Figure 2.6). The composition of the Treebank

was highly varied but included approximately 1.2 million words re-tagged from an existing corpus, the

Brown corpus, and 1.1 million words from 2,499 stories from the Wall Street Journal (WSJ). A further

2 million words of text from the WSJ were annotated with part-of-speech (POS) tags but not constituent

structure.

Since its introduction, a subset of the corpus, the Wall Street Journal section, has become the standard for

both the training and evaluation of parsers in NLP. Commonly, the WSJ section has been converted into

a new grammar formalism or extended with novel linguistic information and released as a derived cor-

pus. Examples of this include PropBank (Kingsbury and Palmer, 2002), which adds predicate-argument
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(<T S[dcl] 0 2>
(<T S[dcl] 1 2>

(<T NP 1 2>
(<L NP[nb]/N DT DT The NP[nb]_137/N_137>)
(<L N NNS NNS rifles N>)

)
(<T S[dcl]\NP 0 2>

(<T (S[dcl]\NP)/(S[pss]\NP) 0 2>
(<L (S[dcl]\NP)/(S[pss]\NP) VBD VBD were ...>)
(<L (S\NP)\(S\NP) RB RB n’t ...>)

)
(<L S[pss]\NP VBN VBN loaded S[pss]\NP_130>)

)
)
(<L . . . . .>)

)

FIGURE 2.7. An example of the CCGbank bracketing structure for “The rifles weren’t
loaded.”

relations, and the Penn Discourse Treebank (Miltsakaki et al., 2004), which adds discourse relations.

Although there have been proposals for using the Penn Treebank as a standard evaluation corpus for

cross-formalism comparison (Matsuzaki and Tsujii, 2008), major issues have been raised regarding the

complexity of the conversion process needed by parsers using different formalisms (Clark and Curran,

2009).

2.3.2 CCGbank

CCGbank (Hockenmaier and Steedman, 2007) is a corpus of CCG normal-form derivations and is the

primary corpus used to train and test wide-coverage CCG parsers. It was derived semi-automatically from

the WSJ section of the Penn Treebank by a CCG extraction program and then manually re-annotated to

ensure consistency (Hockenmaier, 2003). An example of bracketing structure can be seen in Figure 2.7.

CCGbank maintains 99.44% of the sentences from the Penn Treebank, but for the sentences successfully

converted the process was not lossless. CCGbank introduces non-standard rules to handle co-ordination,

punctuation and other linguistic complexities found in the Penn Treebank that are difficult or impossi-

ble to convert to CCG (Hockenmaier, 2003). Co-ordination is implemented via two binary-branching

operations instead of a ternary operation, as shown in Section 2.2.1.2. The corpus has recently been

been extended to include quotation marks (Tse and Curran, 2007), which were removed during the Penn

Treebank conversion, and provide internal structure to noun phrases (Vadas and Curran, 2007, 2008).



2.4 SUMMARY 17

These conversion issues present additional obstacles in the implementation of a state-of-the-art CCG

parser, particularly as this missing information could be used for more accurate results during the CCG

parsing process.

2.3.3 The PARC 700 Dependency Bank (DepBank)

The PARC 700 Dependency Bank, commonly known as DepBank, consists of 700 sentences randomly

selected from the Penn Treebank WSJ section 23. King et al. (2003) created the corpus by parsing the

sentences, capturing the dependency information, and then manually correcting the produced dependen-

cies.

Briscoe and Carroll (2006) re-annotated DepBank in order to produce a derived corpus with an anno-

tation scheme closer in style to their RASP parser (Briscoe et al., 2006). Their dependency annotation

was designed to be as theory-neutral as possible and also contained less grammatical detail to allow for

easy cross-formalism comparisons. Even with this in mind, mapping from one representation format to

another appears to be difficult. When CCG dependencies generated by the C&C parser were evaluated

against this modified DepBank, a number of non-trivial issues led to an upper-bound on accuracy of

84.8% for the task (Clark and Curran, 2007c). This evaluation shows that work still needs to be done on

using dependencies as a method of cross-formalism parser evaluation.

2.4 Summary

In this chapter, Combinatory Categorial Grammar (CCG) was introduced. CCG incorporates both con-

stituency structure and dependency relations into its analyses and can model a wide range of linguistic

phenomena. The rest of this thesis will be based upon this grammar.

Natural languages, as opposed to programming languages, are inherently ambiguous. Even the most

trivial of sentences can have millions of possible derivations. This ambiguity leads to an immense

search space that can make parsing impractical for large-scale use.

Whilst dependency parsing is faster and more efficient in many cases than constituent parsing, there are

many tasks in which constituent structures are necessary. This includes machine translation, automatic

summarisation and semantic role labeling.



CHAPTER 3

Statistical Parsing

Early parsing primarily involved the use of manually curated grammars that were carefully constructed

by linguists. These manually curated grammars suffered from low coverage. Coverage is the percentage

of sentences that a parser can represent and provide an analysis for. For most practical applications,

a wide-coverage parser is required. Wide-coverage parsers aim to parse arbitrary input text without

restricting domain or complexity. Manually curated grammars require substantial cost and complexity

to allow for wide-coverage parsing (Cahill et al., 2008). Many of these complexities are due to the

differences in syntax and semantics across both genres of text and languages themselves.

The task of statistical parsing is to extract these rules from a large collection of manually annotated

text called a corpus. The rules and statistics produced by analysing a corpus is called a parsing model.

As a new parsing model can be created from any sufficiently annotated corpus, we process a relevant

genre-specific corpus to discover these differences in syntax and semantics automatically. Many of the

methods used to automatically acquire this linguistic information have been adapted from the fields of

statistics and machine learning.

In this chapter, two parsing algorithms are explored, the CKY algorithm and the shift-reduce algorithm,

and we describe previous approaches to CCG parsing and parser pruning. The CKY algorithm is one

of the most widely used constituent parsing algorithms and provides strong guarantees on the worst

case running time. The shift-reduce algorithm is used heavily by dependency parsers and allows for

incremental parsing, where the next word can be left unknown. This chapter also introduces the C&C

parsing pipeline and the impact that parser pruning has on parsing speed.

18
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Captain Kirk saw the stellar explosion

NP/N N (S\NP)/NP NP/N N /N N
> >

NP N
>

NP
>

S\NP
<

S 2

3

4

5

1

6

Captain      Kirk         saw         the      stellar   explosion

NP/N      N         VP     NP/N     N/N       N  

NP                                          N

NP

S\NP

S

Span

FIGURE 3.1. The resulting chart when parsing a sentence using the CKY algorithm.
Note that VP represents (S\NP)/NP but has been shortened for presentation reasons.

3.1 The CKY Parsing Algorithm

The Cocke-Kasami-Younger (CKY) algorithm (Kasami, 1965; Younger, 1967) is a dynamic program-

ming algorithm commonly used to parse with context-free constituent structure grammars. Many of

the state-of-the-art results in both constituent structure and dependency parsing have been achieved by

parsers using the CKY algorithm at their core.

Chart parsing algorithms are so termed as they use a triangular data structure called a chart to memoise

possible analyses, seen in Figure 3.1. The chart begins with all the words in the bottom layer and then

combines them until it reaches the root, or top node. The chart begins in the bottom layer, with all

the constituents spanning one word. Each step up, the constituents span one more word, incrementally

increasing the span until the whole sentence is covered. This is achieved by combining two constituents

that together form the current span length. The two constituents must be selected such that one cell is

directly beneath the current cell and the other is a cell on the diagonal. As the constituents are built

in order of span size, all sub-constituents that are required by the current span have been constructed

in previous steps. This is a form of dynamic programming and prevents the reconstruction of smaller

constituents.
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Consider the CCG category S\NP above “saw” with span length four in Figure 3.1. This is created by

combining two categories, the (S\NP)/NP (represented by VP for space reasons) which spans one

word (“saw”), and the NP which spans three words (“the stellar explosion”). By combining a CCG

category with span length one with another of span length three, we create a new CCG category that

spans four words, “saw the stellar explosion”.

CKY is attractive as the worst case running time is O(n3 · |G|), where n is the sentence length and G

is the size of the context-free grammar given in Chomsky normal form. This run-time complexity is

achieved using dynamic programming on the chart, allowing all possible derivations of a sentence to be

calculated without backtracking. Unfortunately, the average case running time for CKY is equivalent to

the worst case. Although CKY is the most efficient parsing algorithm in terms of worst case complexity,

other algorithms exist for parsing with significantly better average complexity. One of these is the shift-

reduce algorithm.

3.2 The Shift-Reduce Algorithm

Shift-reduce parsing is a parsing algorithm composed of two actions and a single base data-structure, the

stack. Shift-reduce parsing performs a left-to-right scan of an input sentence and at each step performs

one of two parser actions: it either shifts the current word onto the stack, or reduces the top two items

from the stack into a single item (Aho and Ullman, 1972). This type of parsing is attractive for use with

deterministic grammars as it is one of the most efficient parsing methods (Knuth, 1965). Deterministic

grammars only allow at most one possible action at each point during parsing. As such, the shift-reduce

parsing algorithm has been widely used in compiler theory for deterministic grammars. Shift-reduce

parsers are also commonly used in NLP due to both their efficiency and also due to their incremental

nature. For applications, such as real-time speech recognition, the parser must be able to begin parsing

whilst the utterance is still being spoken. As the CKY algorithm requires the words to be known in

advance, it is not suitable for such tasks.

The ability to incrementally parse a sentence is vital to the work in Chapters 6, 7 and 8. Incremen-

tal parsing allows for parsing in restricted applications, such as speech recognition and predictive text

editing, whilst allowing for novel features that can be used in other components (see Chapters 7 and 8).

The deterministic shift-reduce parsing algorithm is described in pseudo-code in Algorithm 1. The deter-

ministic algorithm begins with an empty stack. Until all words from the input have been used, only two
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Algorithm 1 The deterministic recogniser version of the shift-reduce algorithm.
Q← input sentence of length N in a queue structure
S ← empty stack
while |Q|and|S| 6= 1 do

if top two nodes on S can be reduced then
A← pop(S)
B ← pop(S)
C ← reduce(A, B) {Reduce the top two nodes according to the grammar}
push(S, C)

else
if Q is empty then
break

end if
A← pop(Q)
push(S, A) {Add the new token to the sentence}

end if
end while
if |S| == 1 then

return input sentence is in the language
end if

actions are possible: reduce or shift. If a reduce is possible, the two nodes to be reduced are popped off

of the stack and replaced with the resulting node. Otherwise, a new node is added from the input. This

process continues until all the words from the input have been used and the stack is only composed of a

single node.

Figure 3.2 demonstrates the process involved in performing CCG parsing over the sentence from Figure

3.1 using the shift-reduce algorithm. The two examples allow for a direct comparison between CKY and

shift-reduce parsing.

Whilst the list of words is provided in the table for instructive purposes, it is important to note that

parsing could continue by shifting additional CCG categories on to the stack. The extended sentence

found in Figure 3.3 could be successfully parsed from the final step of Figure 3.2. This would not be

efficiently possible with the CKY algorithm as the chart data structure must be set up before parsing

begins.

The deterministic shift-reduce parsing algorithm can only be used with unambiguous grammars, which

prevents anything but the most trivial of natural language grammars. Even the simplest of sentences in

natural language contain ambiguity, such as the attachment ambiguity demonstrated in Figure 3.4. If the

parser is deterministic, only one possible structure will ever be considered.
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Pos Action Stack
1 Shift NP/N
2 Shift NP/N N
2 Reduce NP
3 Shift NP (S\NP)/NP
4 Shift NP (S\NP)/NP NP/N
5 Shift NP (S\NP)/NP NP/N N /N
6 Shift NP (S\NP)/NP NP/N N /N N
6 Reduce NP (S\NP)/NP NP/N N
6 Reduce NP (S\NP)/NP NP
6 Reduce NP S\NP
6 Reduce S

Pos Word CCG Category
1 Captain NP/N
2 Kirk N
3 saw (S\NP)/NP
4 the NP/N
5 stellar N /N
6 explosion N

FIGURE 3.2. Walk-through of CCG shift-reduce parsing for the sentence in Figure 3.1.
An underline indicates when two categories have been reduced. Pos indicates the total
number of words shifted on to the stack so far.

A clear extension is to allow the shift-reduce algorithm to handle non-deterministic grammars. Best-

first shift-reduce parsing follows the path deemed most likely to succeed based on a probability model

obtained during training. If a dead-end is discovered during parsing, backtracking occurs until the next

most likely path is found. This is repeated until the sentence is successfully parsed or a maximum

number of paths attempted. Best-first shift-reduce parsing with backtracking can be seen as psycho-

linguistically motivated parsing, as it has been suggested that humans analyse sentences incrementally

and backtrack for unexpectedly complex or unlikely sentences (Pickering, 1999; Tanenhaus and Brown-

Schmidt, 2008).

By allowing backtracking, a non-deterministic shift-reduce parser can be implemented that handles am-

biguous context-free grammars. Unfortunately, backtracking results in extreme efficiency issues. Shift-

reduce parsing with backtracking can take exponential time in the worst case (Tomita, 1988). Whenever

the algorithm backtracks, previous computations are discarded, even if the next path would reuse most

Captain Kirk saw the stellar explosion and the ship barely escaped

NP/N N (S\NP)/NP NP/N N /N N conj NP/N N (S\NP)/(S\NP) S\NP
> > > >

NP N NP S\NP
> <

NP S
>

S\NP
<

S
<Φ>

S

FIGURE 3.3. An extension to the sentence found in Figure 3.1 that could be parsed
incrementally using shift-reduce parsing from the state of Figure 3.2.
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A truck or vehicle with 4WD
NP/N N conj N (N \N )/N N

> >
NP N \N

>
N

NP
<Φ>

NP

A PC or Mac with internet
NP/N N conj N (NP\NP)/NP N

<Φ>
N NP

> >
NP NP\NP

<
NP

FIGURE 3.4. These two sentences, without additional context, display attachment am-
biguity. According to the parse structure, the first sentence states that only the vehicle
has 4WD whilst in the second both the PC and Mac have an internet connection.

of those computations. CKY and other chart parsers memoise the previous results, preventing this ineffi-

ciency. One method that allows for memoisation in shift-reduce parsing is the use of a graph-structured

stack, described in Section 3.2.1. Graph-structured stacks have not been actively explored in the shift-

reduce parsing community.

As the search space can be exponentially large, some form of pruning must be implemented in order

to allow parsing to occur in a practical manner. The majority of shift-reduce parsers in the literature

instead use best-first parsing instead of graph-structured stacks to handle the search space. Best-first

parsing greedily explores the search space, processing derivations that look most promising first. The

two primary approaches have been either a stopping criterion or the use of beam search.

The stopping criterion stops parsing once a maximum number of explored paths have been reached and

returns the best parse found so far. This is a naïve method and can result in low coverage but prevents

the parser becoming unresponsive when met by challenging sentences.

The more commonly used method is beam search. Beam search holds the n-best partial derivations,

scored by a statistical model obtained during training. Searching occurs on the most promising derivation

found so far. After each shift-reduce parse action for this derivation, both the n-best partial derivations

and the best-scoring completed derivation are retained. This is repeated until no new parse actions can be

applied to the partial derivations found in the n-best partial derivation list. At this point, the best-scoring

completed derivation found during parsing is returned. If no completed derivation has been found, then

the highest scoring of the n-best partial derivations is used. This method allows for a strict guarantee on

the time taken to parse a sentence as the value of n can be tailored through experimentation.

The primary drawback to beam search is that if, at any point during the parsing process, the path to the

correct derivation is discarded then shift-reduce parsing will not be able to correctly parse the sentence.



3.2 THE SHIFT-REDUCE ALGORITHM 24

∅ A B C D E

Reduction Rules
F ← D E
G ← D E
H ← C D E

FIGURE 3.5. Consider using shift-reduce parsing to process the stack of tokens by
using the grammar on the right. Note a stack composed of only ∅ is an empty stack.

This can be common when the scoring function does not have sufficient context to appropriately score

early derivations.

3.2.1 The Graph-Structured Stack in Shift-Reduce Parsing

In an attempt to improve the efficiency of non-deterministic shift-reduce parsers, Tomita (1987) de-

scribed an extension to the shift-reduce parsing algorithm for augmented context-free grammars called

a graph-structured stack. Using a graph-structured stack (Tomita, 1988), the parser was able to maintain

multiple derivations without performing inefficient backtracking. This allows for full non-deterministic

shift-reduce parsing in polynomial time, removing the major issue caused by backtracking. This work

culminated in the release of the Generalized LR Parser/Compiler, designed specifically to be used in

practical natural language systems (Tomita, 1990). This technique has seen little use over the years in

other shift-reduce parsers. Huang and Sagae (2010) re-introduced the concept and have shown it to be

highly effective for high-speed dependency parsing.

To illustrate how a graph-structured stack works, an example will be extended from the original paper

where the structure was introduced (Tomita, 1987). In Figure 3.5, an initial stack of tokens has been

created and there is a grammar to be applied. This grammar is ambiguous and can result in three different

derivations depending on which reduction rule is selected. In traditional shift-reduce parsing only one

reduction rule could be applied and without backtracking we would lose the other two derivations.

F

G

∅ A B C D E

H

FIGURE 3.6. When a reduce action is applied, splitting allows for a graph-structured
stack to represent multiple derivations simultaneously in the same structure.
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F

G

∅ A B C D E I

H

FIGURE 3.7. When a shift operation is performed, the graph-structured stack combines
the new node to all the heads.

To allow for multiple derivations, the graph-structured stack allows for an action called splitting, demon-

strated in Figure 3.6. The graph-structured stack allows for multiple heads of the stack. Splitting is

performed whenever a reduce operation is performed and creates a new head on the graph-structured

stack. The new node created by the reduce operation points to the correct previous node on the stack. As

this preserves the previous derivation upon which the reduction takes place, the graph-structured stack

makes reduce a non-destructive operation.

When a shift operation is to be performed, pushing a new node to the top of the stack, the graph-

structured stack allows for an action called combine, demonstrated in Figure 3.7. By combining the

heads of the graph-structure stack to the new node, we only need to perform a single push to update all

possible derivations encoded in the graph-structured stack. In the example, four derivations are updated

by the single shift operation.

Finally, when two reduce operations produce the same structure, the graph-structured stack performs

local ambiguity packing to prevent duplicated work, as see in Figure 3.8. As each reduce operation

is completed, the graph-structured stack checks whether the resulting node is equivalent to an existing

head. If it is, then we keep track of the ways the given node can be generated and merge them into a single

F

G J

∅ A B C D E I

H

Reduction Rules
J ← F I
J ← G I

FIGURE 3.8. Node J has been reduced from both F and G , but only one new node is
created. This local ambiguity packing allows for polynomial time shift-reduce parsing.
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1 432 5

2

3

4

5

1

Frontier

Span

FIGURE 3.9. An illustration of the relationship between the chart in CKY and the GSS
in SR. All the diagonal entries in the chart are pushed to the bottom level, with the cell
dictating the frontier in the GSS.

node. By producing only one new node, worst case shift-reduce parsing is reduced from exponential time

to polynomial time.

These three key notions of splitting, combining and local ambiguity packing are the basis of the graph-

structured stack.

3.2.1.1 Frontiers in the Graph-Structured Stack

When parsing an n token sentence, there are n possible stages in the graph-structured stack. We refer to

these stages as frontiers, with the kth frontier containing all partial derivations that contain a total span

of k. This allows us to understand the graph-structured graph through comparing it to a CKY chart. Each

frontier in the graph-structured stack can be considered as representing all the cells in the CKY chart on

the diagonal from the top left to the bottom right, as seen in Figure 3.9. As the graph-structured stack

performs all possible reductions before reaching the next step.

Although the graph-structured stack can be explained briefly, it has been implemented in only a re-

stricted number of shift-reduce parsers (Tomita, 1990; Huang and Sagae, 2010). The main complex-

ity is correctly performing the splitting, combining and local ambiguity packing in new parsing meth-

ods and grammars. In Tomita (1987) there is a brief discussion on the feasibility of implementing a
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graph-structured stack for Categorial Grammar, which is a precursor to CCG, but many practical im-

plementation issues are omitted. Currently a graph-structured stack for CCG has not been discussed or

implemented in the literature.

3.3 Parsing CCG

To illustrate how a CCG parser operates, we will be describing the approach used by the C&C parser. This

serves as a basis for the work in this thesis and for other CCG parsers in the literature. The C&C parser

will be described in detail in Section 3.4.1. The process of parsing a sentence with the C&C parser can

be seen in Figure 3.10 and involves three primary stages: tagging, parsing, scoring and decoding. The

tagging stage supplies features that will be used by the parser to improve accuracy or speed, such as part

of speech tagging and supertagging. The parsing stage forms attempts to combine the CCG categories

together and returns all possible derivations of the sentence. Finally, the scoring and decoding stages

process each possible derivation and determines which is most likely to be correct.

3.3.1 Part of Speech Tagging

Tokenised text is initially supplied to a part of speech (POS) tagger. The part of speech tagger used in the

C&C framework applies tags from the Penn Treebank tag set. These tags assign a lexical class to each

word, helping define the syntactic behaviour of the word in question. Common linguistic categories

include nouns, verbs and determiners. The POS tagger uses the surrounding context of the word and

features of the word itself to help determine the correct part of speech. The POS tags of each word are

then passed on to later stages of the pipeline as additional features to improve accuracy.

3.3.2 Supertagging

There are 1,286 different CCG categories seen in CCGbank Sections 02-21. Enumerating all of them

is not feasible. The C&C parser uses supertagging to eliminate tags that are unlikely to be used in the

DecodingPoS Tagging Supertagging Parsing Scoring

FIGURE 3.10. The traditional parsing pipeline used for CCG parsers.
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parsing process, allowing for huge speed increases. The supertagging process has been described as

“almost parsing” (Bangalore and Joshi, 1999) since the lexical categories assigned by the supertagger

already encode significant amounts of syntactic information. If supertagging were to supply only the

correct CCG category for each token in the sentence, CCG parsing is a relatively simple process to

combine them to form a correct analysis.

In order to assign the correct tags, the supertagger uses a wide range of features from both the token,

the context surrounding the token and the surrounding POS tags. These POS tags are acquired from the

previous parsing stage.

Whilst the state-of-the-art per-token supertagging accuracy is around 92% on Section 00 (Clark and

Curran, 2007c), this only results in a sentence-level accuracy of 36.8%. This is highly problematic as

the average sentence length in the Penn Treebank is 20.54 tokens per sentence. With a supertagging

accuracy of 92%, there would be an average of 1.64 incorrect tokens per sentence if the errors were

evenly distributed. Due to the high degree of lexicalisation of CCG, a single supertagging error can

prevent the parser finding a spanning analysis. A spanning analysis is a derivation that takes all words

into account, spanning the entire sentence.

To address this problem, supertaggers can assign multiple lexical categories per token in the sentence

in a process known as "multi tagging". In this work, multi tagging will only apply to applying multiple

CCG categories to a given word. By returning all lexical categories that are within some factor β of the

highest probability lexical category, we can increase the probability that the correct tag will be supplied

to a token. By using all categories that are at least 1% as probable as the most probable category, the

per-token supertagging accuracy can be raised to 98.5% and the sentence-level accuracy to 78.4%.

Multi-tagging requires a delicate balancing act for optimal performance. If too many categories are

assigned, then the parser will have to do increased amounts of work due to the increased ambiguity,

becoming slower and slower the more lexical tags that are assigned. If too few categories are assigned,

then the parser will likely not be able to form an analysis of the sentence. This raises the possibility of a

trade-off between speed and accuracy by modifying the number of CCG tags assigned by the supertagger.

This will be discussed in detail in Section 4.4.2.
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For a while in the 1970s it seemed Mr. Moon was on a spending spree, with such purchases as
the former New Yorker Hotel and its adjacent Manhattan Center; a fishing/processing conglomer-
ate with branches in Alaska, Massachusetts, Virginia and Louisiana; a former Christian Brothers
monastery and the Seagram family mansion (both picturesquely situated on the Hudson River);
shares in banks from Washington to Uruguay; a motion picture production company, and newspa-
pers, such as the Washington Times, the New York City Tribune (originally the News World), and
the successful Spanish-language Noticias del Mundo.

FIGURE 3.11. A sentence, taken from the Penn Treebank, which contains only 108
tokens yet has 6.39× 1023 = 279 different possible analyses.

3.3.3 Parsing

Parsing attempts to combine the CCG categories together using CCG combinatory rules until a spanning

analysis is found. If the parser enumerates all the possible derivations and cannot find a spanning analy-

sis, the parser fails. The most common algorithms for performing CCG parsing, the CKY and shift-reduce

algorithms, have been previously described.

3.3.4 Scoring and Decoding

Due to ambiguity in natural languages, it is possible that a sentence could have multiple spanning analy-

ses. To select the most likely analysis, a scoring model is applied. The scoring model is most commonly

probabilistic in nature and uses parameters chosen during training.

For certain sentences, it is not even computationally feasible to enumerate all possible derivations the

parser has produced. The sentence in Figure 3.11 demonstrates the challenge that wide-coverage parsers

face when handling complex sentences.

Decoding is the process of finding the highest-scoring derivation from the derivations the parser has

produced. Different decoders can be used in an attempt to optimise towards different goals. For the

C&C parser, two primary decoders exist: the dependency decoder and the normal-form decoder. The

dependency decoder involves summing the probabilities of all possible derivations that yield a particular

dependency structure. This includes the nonstandard derivations eliminated by normal-form constraints.

The normal-form model scores normal-form derivations more highly than the alternate derivations.
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3.4 Existing Parsers

As CCG, as used in CCGbank, is a binary branching grammar, it is use possible to use the CKY algorithm

and the shift-reduce algorithm for CCG parsing. The choice of algorithm has a high degree of impact

on the parser and what role supertagging can play. This is explored below by analysing the C&C parser

(Clark and Curran, 2007c) and the Zhang and Clark shift-reduce CCG parser.

3.4.1 The C&C Parser

The C&C parser (Clark and Curran, 2007c) is a highly efficient state-of-the-art CCG parser trained on

CCGbank. Through a number of evaluations, the C&C parser has been found to be competitive with

state-of-the-art parsers across grammatical relations (Clark and Curran, 2007c), Penn Treebank phrase-

structure trees (Clark and Curran, 2009) and unbounded dependencies (Rimell et al., 2009).

The parser uses the CKY algorithm for CCG described in Steedman (2000). The CKY algorithm has

been modified to merge equivalent derivations caused by ambiguity (which still exists even after Eisner

constraints have been enforced) and increases the parsing efficiency of the parser.

Supertagging in the C&C parser involves a back-off model. The parser initially attempts to find a

spanning analysis of a sentence using as few CCG tags per token as possible. If parsing fails, the parser

requests more CCG tags per token by lowering the beta level of the supertagger and repeats the parsing

process. This continues until either the sentence is successfully parsed, the C&C parser enumerates

the entire search space, or a user specified threshold is reached. This user specified threshold is most

commonly implemented by ending parsing once a specified maximum number of CCG categories have

been created during the parsing process.

Through a tight integration between parsing and supertagging Clark and Curran (2007c) use the C&C

parser to show that efficient wide-coverage CCG parsing is possible and that state-of-the-art results can

be achieved without sacrificing speed.

3.4.1.1 Adaptive Supertagging

As mentioned previously, supertagging increases the speed of CCG parsers substantially. The key, how-

ever, is ensuring that the supertagger provides the CCG categories that the parser requires. If the su-

pertagger supplies the wrong tags initially, more supertags are supplied. In many cases this results in the
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correct tags being provided to the sentence. In other cases, the supertagger will not supply the correct

categories but the parser can still form a spanning analysis.

When more supertags are requested for each word, parsing speed decreases due to the search space

increasing due to ambiguity.

Kummerfeld et al. (2010) implement a novel self-training method that allows for interaction between

choices the supertagger makes and the C&C parser itself. The supertagger is trained on the CCG cat-

egories that the parser returns from the successfully parsed sentences, rather than the CCG categories

supplied by human annotators in CCGbank. This results in a supertagger and parser that have much

lower ambiguity levels and/or successfully parse the sentence during an earlier pass, resulting in a sub-

stantial parsing speed increase. As the supertagger selects the CCG categories that the parser would have

used anyway, there is no impact on the accuracy of the parser. This is termed adaptive supertagging.

3.4.2 Hassan et al. Incremental CCG Parser

Hassan et al. (2008) present an incremental, linear time dependency parsed based on a deterministic

transform of CCG. To allow for incremental parsing, the shift-reduce algorithm is used. The output of

the parser is to be used in machine translation, speech recognition and word prediction systems where

speed is a factor.

Whilst their work aimed for high accuracy, they claim the deterministic and linear-time nature of their

parser forces results below that of state-of-the-art for CCG parsing. They report a parser speed increase

of ten times over the C&C parser on comparable hardware.

3.4.3 The Zhang and Clark Shift-Reduce CCG Parser

The shift-reduce parser implemented in Zhang and Clark (2011) performs full CCG parsing, as opposed

to the modified CCG subset used by Hassan et al. (2008). It achieves state-of-the-art results in CCG

parsing and compares favourably to the C&C parser on which it is based.

The Zhang and Clark shift-reduce CCG parser uses a number of components from the C&C parser, such

as the tagging and evaluation infrastructure. This allows them to provide a detailed error comparison

with the C&C parser. As little changes other than the parsing algorithm, this demonstrates the relative

advantages and disadvantages of the CKY and shift-reduce algorithms.
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3.5 Pruning

Due to both the ambiguity in natural languages and the flexibility of CCG, parsing speed can be imprac-

tical for many tasks. Ambiguity must be reduced to improve parsing speeds. This is commonly achieved

through pruning of the parser search space.

3.5.1 Lexical Pruning

Lexical pruning uses the words and the textual hints from the input sentence to prune the search space

that must be explored. This is possible as many words are commonly used in restricted contexts.

Lexical pruning traditionally occurs before the parser has begun processing the sentence. In C&C pars-

ing, supertagging performs lexical pruning by restricting the possible CCG categories that can be as-

signed to a word. This is necessary as CCGbank Sections 02-21 contain 1,286 different CCG categories.

To naïvely attempt all CCG categories seen in training with each word in the sentence would be disas-

trous. Even attempting only the CCG categories seen with a particular word would not work. The words

as , is and to have been seen with over 100 different CCG categories each in CCGbank Sections 02-21

for example. If each of the 50 categories had to be considered each time one of those words were seen,

CCG parsing would be impractical.

An example of this could occur with the word “saw” during CCG parsing. The word could be either a

noun (a cutting implement) or a verb (to see). Without additional context, all possible CCG categories

that apply to the word would need to be supplied. With additional context, however, it is possible we can

reduce the assigned categories without an impact on parsing accuracy. If the preceding word was “the”,

then it is most likely a noun as few instances of “the saw” have occurred with “saw” as a verb.

If a sentence is not successfully parsed, the parser requests more supertags from the supertagger and

repeats the process. In the worst case, it would be possible to repeat this until the supertagger provides

all possible supertags ever associated with the word. As such, if the sentence was a rare construction

with “the saw” containing “saw” as a verb, then the supertagger would eventually supply the unlikely

CCG category.
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3.5.2 In-Parser Pruning

Numerous methods have been suggested to improve the speed of CKY chart parsers, both from linguistics

and computer science. Some methods stem from graph search algorithms, such as research into best-

first probabilistic chart parsing (Caraballo and Charniak, 1996, 1997), beam-search andA∗ chart parsing

(Klein and Manning, 2003; Pauls and Klein, 2009). Other than A∗ chart parsing, none of the other

techniques can guarantee that they won’t accidentally discard the most probably derivation. This means

that the speed increase in these methods comes at a potential accuracy cost.

Methods of chart pruning have also been proposed to improve the speed of CKY parsers. Chart pruning,

by indicating words that can start or end multi-word constituents, has met with success in CCG and other

formalisms (Roark and Hollingshead, 2008, 2009; Zhang et al., 2010). Coarse-to-fine parsing, where a

parser first uses a coarse level grammar to prune the search space for the original grammar, has also been

successfully used with the CKY algorithm (Charniak et al., 2006). Unfortunately, generating a coarse

level grammar from a fine level grammar is not trivial and has only been done for probabilistic context

free grammars (PCFG).

Various practical implementation improvements have also been tried, including parallelisation of the

CKY algorithm (Haas, 1987; Grishman and Chitrao, 1988) and a CKY parser using bit-vector opera-

tions for both speed and space efficiency (Schmid, 2004). Whilst not linguistically oriented, both these

approaches can result in substantial speed-ups as hardware becomes more and more sophisticated.

Even with all of these various speed improvements, CKY parsing is not yet practical on a large scale.

3.6 Summary

In this chapter, we have given a broad background of statistical parsing with a particular focus on parsing

CCG. The CKY and shift-reduce algorithm have been described and their relevant merits discussed. The

shift-reduce algorithm can parse sentences incrementally but cannot parse sentences efficiently. By using

dynamic programming, the CKY algorithm is efficient but cannot parse incrementally.

The graph-structured stack was introduced to allow efficient shift-reduce parsing. Few GSS-based

parsers have been implemented, however, and have not been the actively explored since Tomita (1987).
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Finally, the traditional parsing pipeline for the C&C parser was described. Currently there is no interac-

tion between the tagging and parsing processes. Tagging happens before parsing and can only use the

surface features of language such as the raw text itself. In Chapter 7 we explore the possible accuracy

gains from tightly integrating the tagging and parsing processes.



CHAPTER 4

Evaluation

Performing a fair and thorough evaluation on parsers is a difficult task. In this chapter, we describe

a number of evaluation metrics used for parsers. We also discuss the difficulty in performing cross-

formalism comparisons and problems with the field-standard PARSEVAL measure. These evaluation

metrics are vital in understanding how modifications to the parser impact performance, both in relation

to speed and accuracy.

4.1 Metrics

4.1.1 Precision, Recall and F-score

Before describing accuracy metrics for parsers specifically, it is helpful to introduce accuracy metrics in

a broader context. These will be discussed in terms of classification tasks. Imagine we were attempting

to identify spam email. In general terms, the three most common metrics in measuring accuracy are

precision, recall and F-score. These would be defined in terms of:

• True Positives: Instances that are correctly predicted as being in class X (real spam)

• False Positives: Instances that were incorrectly predicted as being in class X (normal email

classified as spam)

• True Negatives: Instances that were correctly predicted as not being in class X (normal email)

• False Negatives: Instances that were not classified as class X but should have been according

to the gold standard (real spam classified as normal email)

For classification tasks, precision (Equation 4.1) is the number of true positives over the number of true

positives and false positives and recall (Equation 4.2) is the true positives over the true positives plus

false negatives.

35
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These two metrics are required as they provide different aspects of system accuracy. The spam classifi-

cation system could achieve a recall of 100% (i.e. successfully identify all spam messages) by assigning

spam to all pieces of email. This system could also achieve a precision of 100% (i.e. successfully avoid

identifying any real messages as spam) by assigning only the most confident cases as spam. The former

would not be a very useful system, whilst the latter may be just as useless if it only identifies 1 in 10,000

spam messages. For identifying spam messages in email, it would be preferable to focus on precision

over recall (i.e. identify fewer of the spam messages but avoid classifying normal email as spam), but

recall is still a consideration. By providing both of these metrics, proper evaluation can occur on the

relative benefits of optimising precision over recall or vice versa.

P =
tp

tp+ fp
(4.1)

R =
tp

tp+ fn
(4.2)

Fβ = (1 + β2)
PR

β2P +R
(4.3)

Finally Fβ-score is based upon the effectiveness measure introduced by Rijsbergen (1979) and attempts

to provide a metric that represents both the precision and the recall of the system as a single metric. This

is accomplished by calculating the weighted harmonic mean of both precision and recall (Equation 4.3).

By adjusting β, we can place more emphasis on either precision or recall. In practice, F-score usually

refers to F1-score and provides an even weighting between precision and recall. This allows two systems

with differing precision and recall to still be comparable on a single metric. Unless stated otherwise, all

reported F-scores in this thesis will refer to calculation with β = 1.

The use of precision, recall and F-score in evaluating the C&C parser will be discussed more specifically

in Section 4.2.2.

4.1.2 Coverage

For parsing, coverage is a measure of the percentage of sentences in a corpus that the parser returns one

or more parses for. As there is no confirmation of whether the sentences have been parsed correctly, this

is a weak measure that provides an upper-bound on the number of sentences a parser could theoretically
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produce correct analyses for. Constituent parsers require a spanning analysis, or an analysis that covers

all the words in a sentence, before a sentence is considered successfully parsed.

Coverage issues can arise in two primary areas, either due to the coverage of the grammar or errors

during parsing. Due to the complexities of natural language, many grammars are not flexible enough to

allow for all possible sentences. When sentences use rules not covered by the grammar, parsing is not

possible and the no analysis is returned for the sentence. The other source of coverage issues are errors

during parsing. For example, if the correct CCG categories are not provided during CCG parsing then it

may be impossible to form a spanning analysis.

It is important to note that fragmentary coverage is also possible. Fragmentary coverage is where a subset

of the sentence has been successfully parsed but the full sentence has not been. For dependency parsers,

fragmentary coverage is a natural result as a single unsuccessful dependency is not likely to prevent the

rest of the parsing process. If a given construction deviates too far from the grammar’s coverage, but

the parser returns the dependencies from the other sub-structures, then the parser successfully returns a

fragmentary analysis of the dependency structure. Fragmentary analysis for constituent parsers is also

possible but is more complicated as partial trees need to be combined together.

Finally, it is standard in the field to return accuracy metrics only for the sentences that the parser success-

fully covers. This can be a problem as sentence complexity is not the same. Parsers are more likely to

fail on complex sentences for which they would receive low accuracy. By avoiding complex sentences,

the overall parser accuracy may appear to be much higher than it actually is.

4.2 Evaluation against the Wall Street Journal

In the field of NLP, the Wall Street Journal subset of the Penn Treebank is used in the training and

evaluation of many parsers. The corpus has been split into 25 sections numbered from 00 to 24 with

certain sections commonly used for specific purposes. The canonical configuration is Section 00 for

development, Sections 02-21 for training, and Section 23 for final evaluation.

Whilst this enables a direct comparison between different parser implementations and formalisms, it

could potentially be leading to over-fitting in the community as all parsers are aiming to improve accu-

racy on Section 23. This also prevents certain forms of statistical analysis on the results, such as k-fold
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cross validation, as only the results for Section 23 are considered directly comparable by others in the

community.

4.2.1 PARSEVAL

One of the most common performance metrics used to evaluate parsers on the Penn Treebank and similar

derived corpora is the PARSEVAL metric (Black et al., 1991).

PARSEVAL checks label and word-span identity in parser output compared to the original treebank trees,

scoring the extent to which the bracketing in the two analyses match (labeled bracketing). It provides

no measure of error severity and gives no credit to constituents with slightly incorrect phrase boundaries

despite correctly recognised syntactic categories. Bangalore (1997) even questions whether success in

the PARSEVAL metric is related to success in parsing due to these numerous limitations.

Rehbein and van Genabith (2007) explore whether parsing less-configurational languages such as Ger-

man is more difficult than English or whether the lower parsing scores of German are just artifacts of

treebank encoding and the PARSEVAL metric. By inserting controlled errors into gold-standard tree-

bank trees, they are able to measure the effects of these errors on the parser’s evaluation performance.

These experiments provide evidence of fundamental issues with the PARSEVAL metric and show that

PARSEVAL performance is highly influenced by the treebank encoding.

Despite severe criticisms, PARSEVAL is still the standard metric for parser evaluation on the Penn Tree-

bank. This makes comparing state-of-the-art results between parsers using different formalisms a diffi-

cult task (Clark and Curran, 2009). The underlying issue is that constituent accuracy is not meaningful

to all parsers.

4.2.2 CCGbank Dependency Recovery

The PARSEVAL metric makes a particularly poor evaluation metric for CCG parsers. This is specifically

as the PARSEVAL metric measures similarity between tree bracketing structures. Due to spurious am-

biguity (see Section 2.2.2), a CCG parser can return many different equivalent analyses for a sentence

that each have a different tree structure. As the PARSEVAL measure can only consider a single gold

standard tree to compare against, this can lead to penalising correct CCG derivations due to differing

structure and bracket placement even when two CCG trees are equally correct and semantically equiva-

lent. Additionally, Penn Treebank trees are flat in structure as opposed to binary branching CCG trees.
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saw_2 ((S[dcl]{_}\NP{Y}<1>){_}/NP{Z}<2>){_} 1 Jack_1 0
stole_5 ((S[dcl]{_}\NP{Y}<1>){_}/NP{Z}<2>){_} 1 Jill_4 0
and_3 conj 1 stole_5 0
and_3 conj 1 saw_2 0
pure_7 (N{Y}/N{Y}<1>){_} 1 gold_8 0
the_6 (NP[nb]{Y}/N{Y}<1>){_} 1 gold_8 0
stole_5 ((S[dcl]{_}\NP{Y}<1>){_}/NP{Z}<2>){_} 2 gold_8 0
saw_2 ((S[dcl]{_}\NP{Y}<1>){_}/NP{Z}<2>){_} 2 gold_8 0

FIGURE 4.1. The dependencies produced by the C&C parser for the sentence “Jack
saw and Jill stole the pure gold”.

With substantially more brackets in the CCG trees, comparing scores across Penn Treebank based trees

and CCG trees is not valid. To counter this, the standard evaluation for most CCG parsers is dependency

recovery over a held-out test set from CCGbank.

To understand what dependency recovery looks like in CCG, we can refer to Figure 4.1. These are the

dependencies produced when the parser analyses the sentence “Jack saw and Jill stole the pure gold”.

Dependency (a) indicates that the word “pure” is modifying “gold”. This is indicated by the numbering

in the CCG category, N /N < 1 >, as it says pure modifies whatever is in argument slot 1. The 1 to the

left of gold indicates it occupies this argument slot.

(a) pure_7 (N{Y}/N{Y}<1>){_} 1 gold_8 0

This can be extended to more complex CCG categories. Dependency (b0) indicates that Jill was the

subject of the verb stole, whilst dependency (b1) indicates that gold was the direct object of stole. This

can be seen by repeating the analysis from the example given in dependency (a) except noting that the

CCG category, (S\NP < 1 >)/NP < 2 >, has two argument slots that can be filled by noun phrases.

The first argument slot, NP < 1 >, represents the subject of the verb whilst the second argument slot,

NP < 2 >, represents the direct object of the verb.

(b0) stole_5 ((S[dcl]{_}\NP{Y}<1>){_}/NP{Z}<2>){_} 1 Jill_4 0

(b1) stole_5 ((S[dcl]{_}\NP{Y}<1>){_}/NP{Z}<2>){_} 2 gold_8 0

The evaluation can be calculated over two dependency types: labeled dependencies and unlabeled de-

pendencies. Labeled dependencies take into account the category containing the dependency relation,

the argument slot, the word associated with the category, and the head word of the argument. Only if
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Parser Coverage Labeled F-score Unlabeled F-score Speed
(%) (%) (%) (sentences/second)

CKY C&C 99.01 86.37 92.56 55.6
CKY C&C Auto 98.90 84.30 91.26 56.2
TABLE 4.1. Evaluation of the CKY C&C parser on Section 00 of CCGbank, containing
1,913 sentences. Auto indicates that automatically assigned POS tags were used instead
of gold standard POS tags.

all four are correct is the dependency considered successfully recovered. This can be considered a harsh

evaluation metric as the parser is not rewarded for correctly identifying some subset of the required la-

bels. For example, if the parser provided the wrong CCG category for a verb but correctly identified the

verb’s subject, the dependency is considered entirely incorrect. Unlabeled dependencies only require the

head and the argument to match, allowing partially correct dependencies like this to be considered cor-

rect. The calculation of precision, recall and F-score for dependency recovery in CCGbank is described

below and continued in more detail in Clark et al. (2002).

P =
# dependencies correctly recovered by the parser

# dependencies in the parser output

R =
# dependencies correctly recovered by the parser

# dependencies in the gold standard

F =
2PR

P +R

In addition to these dependency-based metrics, the C&C parser reports three additional metrics: sentence

accuracy (the percentage of sentences that have all the dependencies correct), speed (in sentences per

second) and coverage (the percentage of sentences that actually receive an analysis, see Section 4.1.2

for full detail).

An example of the output produced when evaluating the C&C parser can be seen in Table 4.1.
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4.3 Speed Comparisons

Many NLP tasks require the processing of massive amounts of textual data. Since the advent of the

World Wide Web, both the size and variety of potential data sources has increased substantially. Such

large amounts of data necessarily demand high efficiency parsing tools, as otherwise many tasks in NLP

would become impractical due to the processing time involved.

There is a trade-off between parser accuracy, parser efficiency and linguistic detail. There have been

some attempts to produce an efficiency metric that is independent of hardware (Roark and Charniak,

2000) but these have not been widely accepted by the research community.

The current method of speed comparison in NLP is simply reporting the time taken to parse a given

corpus on an arbitrary hardware instance. This makes fair speed comparisons nearly impossible as

hardware instances are difficult to replicate and the source code and data models for many of these

experiments are never publicly released.

It is also common to measure parsers in terms of sentences per second, though this too is problematic.

As sentences are of variable length and complexity, the measured speed of sentences per second can

fluctuate widely. In our evaluation, the parsing speed (as measured in sentences per second) of Section

23 is nearly twice that of Section 00, even though Section 23 has more sentences than Section 00 (2,407

sentences compared to 1,913). Kummerfeld et al. (2010) has attempted to demonstrate parsing speed by

grouping and testing on sentences of specific length, but this has not been duplicated by others in the

community and there is no official selection of sentences allowing for a fair comparison.

As such, there is no agreed metric for comparing parsing speed and efficiency between parser implemen-

tations. Parsers that do not achieve state-of-the-art results are generally met with little enthusiasm, even

if the parsing speed has been substantially improved. Efficiency needs to become an important metric in

parsing before NLP is more widely used.

4.4 Tagging Accuracy

In our work, tagging is the task of assigning a class to a given word in a sentence. Whilst the evaluation

for POS tagging and supertagging are similar for the single tagging case, the evaluation for multi tagging

used in supertagging is more involved.
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4.4.1 POS Tagging

Accuracy in POS tagging is defined by two metrics: accuracy calculated on a per token basis and accuracy

calculated on entire sentences. These are calculated by

Accuracy =
# of correct tags/sentences
# of total tags/sentences

For tagging, we refer only to accuracy as precision is equivalent to recall because each word must be a

ssigned a tag.

Calculation over entire sentences is important to provide an indication of system performance in a real

setting. For example, given a POS tagger with a high per token accuracy of 97%, there is one error every

35 classifications. Whilst the average sentence length of section 02-21 of the Penn Treebank is 20.54

words per sentence, many sentences exceed 35 words in length, meaning statistically one or more errors

will occur.

An example of the output produced when evaluating the C&C POS tagger can be seen in Table 4.2.

Algorithm Accuracy (tags) Accuracy (sentences)
POS Tagging 96.80% 51.76%
Supertagging 93.31% 43.81%

TABLE 4.2. POS tagging and supertagging accuracy on Section 00 of the Penn Tree-
bank, calculated across both individual tags and entire sentences.

4.4.2 Supertagging

For supertagging, the same accuracy metric introduced for POS tagging is used. This results in an

accuracy calculated on a per tag basis and accuracy calculated on entire sentences. State-of-the-art

supertagging, when only a single supertag is assigned, is around 93%. An example of the single tagging

output produced when evaluating the C&C supertagger tagger can be seen in Table 4.2.

As supertagging is less accurate than POS tagging, and a missing CCG category can prevent a successful

derivation, a method called multi tagging is employed. The supertagger is allowed to assign more than

one possible CCG category per word. If any of the assigned supertags is the correct CCG category, parsing

can continue successfully. As such, we provide a lightly modified accuracy metric for multi tagging,
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Accuracy =
# of CCG tag sets that contain the correct tag

# of total words

Unfortunately, assigning more than one supertag slows parsing speed substantially. As such, the aim of

supertagging is to use as few tags as necessary. To understand the evaluation for multi tagging, a number

of parameters must be described:

• Beta Levels (β): Any tag within a certain fraction, β, of the most likely CCG tag will be

included in the tag set for the word. Low β values increase the number of categories per word,

and thus the accuracy, but result in a slower parser (see categories per word).

• Dictionary cutoffs (k): The dictionary cutoff forces the supertagger to use only the categories

the category has been seen with in the training data if the category occurs less than k times

in the training data. This is as the lack of context combined with a low β level may lead to

extremely large numbers of categories assigned to the word.

As part of multi tagger evaluation, the average number of CCG categories assigned per word is recorded.

This is defined as categories per word and represents the level of ambiguity introduced by the supertag-

ger. This value should be as small as possible whilst allowing for the highest accuracy possible as it is

directly related to parsing speed.

Finally, as POS tags are used as features for the supertagger, any errors that occur during POS tagging

have an impact on supertagging accuracy. To identify how much of an impact this has, two accuracy

metrics are reported: one uses gold standard POS tags and the other uses automatically (auto) assigned

POS tags provided by the POS tagger.

An example of the output produced when evaluating the C&C multi tagger for CCG supertagging can

be seen in Table 4.3. Note that the number of categories assigned per word increases as the beta level

β k CATS/ ACC SENT CATS/ ACC SENT
WORD (GOLD) ACC WORD (AUTO)

0.075 20 1.25 97.73 69.84 1.26 97.33 65.82
0.030 20 1.41 98.26 75.34 1.41 97.89 71.37
0.010 20 1.68 98.69 80.50 1.68 98.38 76.53
0.005 20 1.94 98.84 82.09 1.94 98.54 78.12
0.001 150 3.46 99.36 89.46 3.46 99.08 85.03

TABLE 4.3. Multi tagger ambiguity and accuracy on the development section, Section
00. The tag auto indicates that automatically assigned POS tags were used.
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drops. This has a positive impact on accuracy, but results in higher levels of ambiguity for the parser.

This in turn results in lower parsing speeds.

4.5 Summary

In this chapter, the methods used to evaluate changes in performance are described. Parsing performance

is commonly described in terms of precision, recall, F-score and coverage. Parsing speed is described

in terms of sentences per second. Whilst the metrics for measuring parsing speed are naïve and differ

widely between parser implementations and the hardware used, they provide a strong indication as to

the practical use of a system at the time of its description.

For CCG parsing performance, dependency recovery on CCGbank is used. The use of dependencies

provides a method of evaluation across parsers using different formalisms and so can be considered

independent of the linguistic theory used.



CHAPTER 5

Machine Learning for Statistical Parsing

Machine learning algorithms are one of the core tools in statistical natural language processing. In

these machine learning problems, an algorithm is provided a set of features representing an instance of

the problem. These features are then used to classify the instance into a set of classes or assigned a

probability that a particular class is correct. This is most commonly done by providing a weight for each

feature, storing them in a weight vector. These classes are generally either a yes or no decision (binary

classification) or a set such as POS or CCG categories.

For the training process, the algorithm is provided with a set of training instances. Each training instance

is composed of a set of features and a definitive class classification. The training procedure then aims to

find a set of feature weights that minimize the classification error over this training data. Some machine

learning algorithms guarantee an optimal set of feature weights but others can only guarantee a locally

optimal set of feature weights.

5.1 Background

5.1.1 Averaged Perceptron

The perceptron learning algorithm is an online machine learning algorithm that works through gradient

descent. The algorithm itself is conceptually simple and only updates weights when an instance is

incorrectly classified. As the learning process only requires the current instance, training can be done

without access to all possible training instances. This is referred to as online training. It has been

shown that for any data set that is linearly separable, the perceptron algorithm is guaranteed to find a

solution in a finite number of steps. If the perceptron learning algorithm is run on a problem that is not

linearly separable, then the weights may fluctuate wildly as the algorithm re-adjusts the weights for each

45
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Algorithm 2 The prediction step for a binary perceptron classifier

θ ← dictionary of feature to feature weights (commonly referred to as the weight vector)
feats← the set of features an instance is composed of
total← 0

for f ∈ feats do
total = total + θf

end for
return true if total > 0 else false

incorrect instance. Even with this drawback, perceptron-based algorithms are still commonly used due

to their simplicity and ability to perform online training.

An important extension to this concept is the averaged perceptron algorithm (Collins, 2002). By using

the arithmetic average of the feature weight values seen during training, the algorithm is more resistant

to weight oscillations. This can result in substantially improved performance with no computational

overhead during classification.

5.1.2 Maximum Entropy Modeling

Maximum entropy, or log-linear models, are statistical models that can incorporate information from a

diverse range of complex and potentially overlapping features. The central idea of maximum entropy

modeling is that the chosen model should satisfy all constraints imposed by the training data whilst

remaining as unbiased (i.e. most uniform) as possible. To achieve an unbiased model, the entropy

of the distribution is maximized whilst obeying the constraints the data provides. By maximizing the

Algorithm 3 A single iteration of the perceptron learning algorithm for a binary classification problem

θ ← dictionary of feature to feature weights (commonly referred to as the weight vector)
T ← training set composed of features (feats) and a binary class (kls ∈ −1, 1)
for (feats, kls) ∈ T do
guess = predict(θ, feats)
if guess 6= kls then

{The weight vector is only modified if there is an error}
for f ∈ feats do

{Each feature is moved one up or down by one depending on the direction of error}
θf = θf + kls

end for
end if

end for
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FIGURE 5.1. Presented here is two probability modes for a dice. Both obey two con-
straints: p(1) + · · ·+ p(6) = 1 and p(5) + p(6) = 2

3 . The model on the left is the max-
imum entropy distribution whilst the model on the right contains biases not accounted
for by the constraints.

entropy, we minimize the amount of prior information built into the distribution, leading to an unbiased

distribution.

A simple and intuitive example of this can be seen through modeling the probability distribution of an

unknown six-sided dice, demonstrated graphically in Figure 5.1. We are given only two constraints to

generate the probability model for the dice. The first ensures the model is a legal probability distribution

by ensuring that
∑X p(x) = p(1) + · · · + p(6) = 1. The second specifies that two thirds of the time

either 5 or 6 are rolled, written as p(5) + p(6) = 2
3 .

A human would, with no other information, assume that p(5) = p(6) = 1
3 and that the four remaining

values would occur with equal probability. This is the probability model with maximum entropy, as

seen on the left of the example figure. By distributing the probability mass as evenly as possible given

the constraints, we make no assumptions in the model beyond what the constraints provide. This is not

the only distribution that these constraints allow, however. The supplied constraints allow for an infinite

number of different yet valid probability models. The figure on the right of the example figure illustrates

one of these possible probability models.

Maximum entropy modeling has been used extensively in obtaining statistical models for NLP. Rat-

naparkhi (1996) produced state-of-the-art results for POS tagging on the Wall Street Journal corpus. It

was claimed that as maximum entropy modeling makes no assumption on the distribution of provided

features that diverse experimentation was easier. This included implementing rich feature sets and pro-

viding contextual features that were overlapping or statistically sparse. This work forms the basis of the

POS tagger and supertagger found in the C&C framework (Curran and Clark, 2003).
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Many machine learning techniques are susceptible to over-fitting, where the model sacrifices generality

in order to improve accuracy on the training corpus. Rare features can exacerbate over-fitting as the lack

of context can result in excessively large positive or negative weights for the features. Traditionally, to

prevent over-fitting due to rare features, any feature that occurs less than n times in the training corpus

is removed. This is referred to as a frequency cut-off. A frequency cut-off is based on the assumption

that if a feature rarely occurs, it is unlikely to be informative or reliable.

Maximum entropy modeling can allow these rare features to be considered without leading to over-

fitting by a process called smoothing. By using a Gaussian prior as part of the training process, the

model penalises large positive or negative weights (Chen and Rosenfeld, 1999). This discourages heavy

reliance on any one feature, allowing for rare features to be added to the process. The use of smoothing

with a Gaussian prior has been shown to improve accuracy over using a frequency cut-off (Curran and

Clark, 2003). These results suggest that the assumption behind applying frequency cut-offs is incorrect

and that rare features can be useful in attaining higher accuracy.

As opposed to the perceptron model, maximum entropy modeling requires summations over all of the

features in the training corpus and training cannot be done in an incremental fashion. The training pro-

cess is also computationally intensive as there is no analytic solution for finding the maximum entropy

model. Training therefore uses numerical solvers that provide better and better approximations of the

optimal model after each iteration. The number of iterations required and the time taken per iteration

are highly dependent on the solver and the training corpus supplied.

5.2 Algorithm Implementations in the C&C Parser

5.2.1 Maximum Entropy Modeling

Maximum entropy modeling plays an integral part in the C&C parser. It is used in POS tagging (Curran

and Clark, 2003), supertagging (Clark and Curran, 2004b) and in producing the scoring model used to

determine the highest-scoring derivation (Clark and Curran, 2007c).

The training and classification components of the maximum entropy classifier are written in C++. For

training the parser scoring model, the training process can require up to 25 GB of memory. To handle

this hardware requirement, a parallelised version of the algorithm exists that can run on a cluster of
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machines. For the training of the POS tagger and supertagger models used in this thesis, however, a

single machine is sufficient.

5.2.2 Perceptron Algorithm

In an attempt to lower the memory requirement for training the maximum entropy model, Clark and

Curran (2007a) investigate training using the perceptron algorithm instead of maximum entropy mod-

eling. Whilst the perceptron training process takes over three times as long as the maximum entropy

training process, it uses only 20 MB of memory compared to the 19 GB required by the parser scoring

model. The results of the perceptron model are closely comparable to those of the maximum-entropy

model, suggesting that either training algorithm could be used depending on the context.

The perceptron algorithm has also been used in adaptive supertagging (Kummerfeld et al., 2010). As

mentioned previously, adaptive supertagging is a form of self-training as it uses the parser output as

training data. The CCG categories from sentences that have been successfully parsed are used as training

data for the supertagger. The perceptron algorithm was chosen as it could be trained online, improving

the efficiency of the supertagging model after each new sentence has been parsed.

5.3 Summary

In this chapter, the two primary methods of machine learning used in this work are introduced: maximum

entropy modeling and the averaged perceptron classifier.

Maximum entropy modeling is theoretically sound but is an offline algorithm, requiring all the training

samples to be provided before training can begin. The perceptron algorithm is conceptually simple and

can be implemented efficiently, but does not have the same theoretical guarantees as maximum entropy

modeling. The perceptron algorithm has the advantage of being an online algorithm and can be trained

incrementally by adding new training data.

The maximum entropy modeling is used as the machine learning algorithm in Chapter 7 for all the

tagging results, whilst the perceptron algorithm is implemented in Chapter 8 for use in frontier pruning.



CHAPTER 6

Implementing the Shift-Reduce Algorithm in the C&C CCG Parser

The C&C parser has a highly optimised implementation of the CKY algorithm at its core. The CKY

algorithm is not incremental however and requires all the words of a sentence to be provided before

parsing can begin. For the experiments performed in Sections 7 and 8, incremental parsing is necessary.

The first major contribution of this thesis is the implementation of the shift-reduce algorithm in the C&C

parser, allowing for incremental CCG parsing. As naïve shift-reduce parsing results in exponential time

complexity, we implement a graph-structured stack for CCG to allow for polynomial time shift-reduce

CCG parsing. As the shift-reduce algorithm does not require knowledge of the upcoming tags, this means

that the features of the current parse state can be used to more accurately classify the incoming words.

This is explored in Chapter 7.

The work in this chapter has been accepted for publication under the title Frontier Pruning for Shift-

Reduce CCG Parsing at the Australasian Language Technology Workshop in December 2011.

6.1 The Shift-Reduce Algorithm for CCG Parsing

The shift-reduce algorithm has recently been extended to handle CCG parsing by both Hassan et al.

(2008) and Zhang and Clark (2011). The parser in Hassan et al. (2008) provides incremental shift-

reduce parsing by using a deterministic grammar, sacrificing the expressiveness of CCG. Thus, our

focus will fall on the parser in Zhang and Clark (2011) which implement a shift-reduce CCG parser with

comparable accuracy to the C&C parser. Whilst they do not focus on the incremental nature of the shift-

reduce algorithm, it is still beneficial to discuss how shift-reduce parsing has been modified for CCG by

Zhang and Clark (2011). The set of actions used by their CCG parser is {shift, reduce, unary}.

The shift action has been substantially modified from the traditional definition used by shift-reduce

dependency parsers. In shift-reduce dependency parsers, the next word is pushed on to the stack. In

50
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shift-reduce CCG parsing, however, there are multiple CCG categories that could be considered. These

CCG categories are supplied by the supertagger. In the worst case hundreds of CCG categories may need

to be considered. By only allowing one word to be added, the shift action is performing lexical category

disambiguation in Zhang and Clark (2011) by rejecting other potentially valid CCG categories.

The reduce action closely mirrors that used in traditional shift-reduce parsers. The top two CCG cate-

gories on the stack are popped off, combined to form a new CCG category, and then the resulting CCG

category is pushed to the top of the stack. In CCG parsing, the reduce actions are the CCG combinatory

rules.

Finally, the shift-reduce algorithm is extended to include the unary action. The unary action pops the

top CCG category off of the stack, applies a unary rule to form a new CCG category, and then pushes

the resulting CCG category on to the top of the stack. This additional action was necessary to allow the

unary type-changing and type-raising rules found in the CCG grammar to be parsed using the shift-reduce

algorithm.

As shift-reduce parsing is exponential in the worst case, Zhang and Clark (2011) used beam search in the

shift-reduce CCG parser. After each parse action, both the n-best partial derivations and the best-scoring

completed derivation are retained. This is repeated until no new parse actions can be applied to the

partial derivations found in the n-best partial derivation list. At this point, the best-scoring completed

derivation found during parsing is returned. If no completed derivation has been found, then the highest

scoring of the n-best partial derivations is used.

6.2 Extending the Graph-Structured Stack for CCG Parsing

Whilst Tomita (1988) provides an example of how a graph-structured stack could be applied to Cate-

gorial Grammar, a precursor to CCG, it is limited in scope and is provided in the paper as a proof of

concept.

The primary step in implementing a graph-structured stack for a new grammar formalism is converting

the three base concepts: splitting, combining and local ambiguity packing. Whilst GSS-based uses shift-

reduce parsing as a basis, it is interesting to note how divergent the actions for {shift, reduce, unary} are

when compared to their use in the Zhang and Clark (2011) CCG parser.
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I saw John
NP (S\NP)/NP NP

>
S\NP

<
S

I saw John
NP (S\NP)/NP NP

>T
S/(S\NP )

>B
S/NP

>
S

FIGURE 6.1. We will illustrate how the graph-structured stack can parse the short
sentence “I saw John”, producing these two equivalent derivations.

6.2.1 Splitting

The basic notion of splitting remains the same as the core graph-structured stack implementation. When

a shift or reduce operation occurs, the graph-structure stack creates a new head for the CCG category.

This results in a non-destructive reduce operation and an efficient shift operation.

For CCG, splitting must be extended to include unary rules such as type-changing and type-raising. In

the Zhang and Clark (2011) CCG parser, the unary rules are implemented by an explicit new operation

called unary. As the graph-structured stack computes and stores the results of all possible operations,

the unary operation must be implemented after every possible action.

Whenever a new CCG category is added to the graph-structured stack, whether by a shift or reduce, all

possible unary reductions are applied to this new category. Each of the resulting CCG categories are then

added as a new head to the structure. This is equivalent to running the unary operation on all possible

trees.

In the following graph-structured stack examples, we will parse the short sentence “I saw John” as seen

in Figure 6.1. In Figure 6.2, only the CCG tag for the word “I”, NP , has been shifted on to the graph-

structured stack. This tag can be modified by a unary rule, type-raising, to become S/(S\NP). In the

S/(S\NP)

∅ NP

FIGURE 6.2. This is a graph-structured stack (GSS) representing an incomplete parse
of the sentence fragment “I” with CCG category NP .
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S/NP

S/(S\NP)

∅ NP (S\NP)/NP

FIGURE 6.3. This is a graph-structured stack (GSS) representing an incomplete parse
of the sentence fragment “I saw”.

graph-structured stack, splitting occurs and both NP and S/(S\NP) become heads, allowing for non-

destructive operations. In a traditional shift-reduce CCG parser, only one of these parsing actions could

be represented.

6.2.2 Combining

Combining is equivalent to the shift operation in the Zhang and Clark (2011) CCG parser. Whilst shift-

reduce dependency parsers only have one possibility for the next node to be added (most commonly

the word token itself), in shift-reduce CCG parsing there may be multiple possibilities. These multiple

possibilities are dictated by the supertagger. If the supertagger assigns n possible CCG categories to

the next word, the CCG parser must select which of those to add to the stack. Thus, the shift operation

in traditional shift-reduce CCG parsers perform disambiguation. If the disambiguated CCG category is

incorrect, the parsing process may fail.

The Zhang and Clark (2011) CCG parser uses beam search to allow for limited ambiguity in these

situations. This allows for more than one of the possible CCG categories to be considered as long as the

partial derivation remains in the n best-scoring partial derivation list. This improves the probability that

the correct CCG category will be shifted, but there is no guarantee this will occur.

The graph-structured stack prevents this issue by processing all possible CCG categories that the su-

pertagger assigns. This is possible as the graph-structured stack can encode this ambiguity efficiently,

as opposed to traditional shift-reduce CCG parsers.

In Figure 6.3, we extend the example in Figure 6.2. Incremental parsing continues as we push on the

word “saw” with the CCG tag (S\NP)/NP . Note that this combines with the two previous heads on

the stack, NP and S/(S\NP). As such, we only perform one push operation but this impacts multiple

stacks.



6.2 EXTENDING THE GRAPH-STRUCTURED STACK FOR CCG PARSING 54

S

S/NP

S/(S\NP)

∅ NP (S\NP)/NP NP

S\NP

S

S/NP

S/(S\NP)

∅ NP (S\NP)/NP NP

S\NP

S

FIGURE 6.4. This is a graph-structured stack (GSS) representing an incomplete parse
of the sentence fragment “I saw John”. Local ambiguity packing will recognise the two
S nodes as semantically equivalent and merge them into a single node.

6.2.3 Local Ambiguity Packing

The core concept of the graph-structured stack is local ambiguity packing. Without it, the tree becomes

exponential in size, even with splitting and combining. Local ambiguity packing for Categorial Grammar

is only briefly alluded to in Tomita (1988) and is not used in the Zhang and Clark (2011) CCG parser.

To enable CCG parsing using a graph-structured stack, we need to define syntactic equivalence for the

CCG categories. Syntactic equivalence occurs when two CCG categories have the same category and will

result in the same final derivation.

Checking for equivalence in CCG categories is implemented in the C&C parser as it is necessary for the

CKY algorithm. In the C&C parser, two CCG categories are equivalent if they have the same category

type, identical heads and identical unfilled dependencies. By ensuring the head and unfilled dependen-

cies are equivalent, the same dependencies will be created in any subsequent parsing. In shift-reduce

parsing with the graph-structured stack, we must also check to ensure that the CCG category points to

the same previous stack position.

An example of local ambiguity packing can be seen in Figure 6.4. The CCG category S can be generated

by two different structures for the sentence “I saw John”, one using type-raising and one without. Using

local ambiguity packing, these two nodes will be recognised as equivalent and be combined to form a

single node. The two derivations shown initially in 6.1 are now represented by the single node S .
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6.3 Implementation and Performance Optimisations

Introducing a new parsing algorithm to the C&C parser involves a number of modifications through-

out the code-base. The CKY algorithm and GSS-based shift-reduce algorithm should produce almost

equivalent output for similar sentences. If the shift-reduce algorithm and graph-structured stack are im-

plemented correctly, accuracy should be near equivalent for both the CKY CCG parser and shift-reduce

CCG parser. Thus, accuracy is not an issue if the new algorithm is correctly implemented. The primary

issue is the impact on parsing speed this new algorithm has.

As the only parsing algorithm used by the C&C parser has been the CKY algorithm, much of the code-

base is tightly integrated with the existing parsing code for efficiency. Whilst the shift-reduce algorithm

enables both incremental parsing and an improved feature set (to be discussed in Sections 7 and 8), it

is unlikely to be used if parsing speed is substantially reduced. The C&C parser features an myriad of

such optimisations in the code-base for the CKY algorithm and only a small number of these could be

duplicated for the graph-structure stack implementation. Over time, further improvements are possible,

but they are primarily engineering in nature.

6.3.1 High-speed Equivalence Checking

The C&C parser has a highly optimised collection of hash tables to allow for rapid equivalence checking

in the cells of the CKY chart.

The same equivalence checking is also used for local ambiguity packing in the graph-structured stack

to allow for polynomial time parsing using the shift-reduce algorithm. Unfortunately, the stress on

the equivalence hash table substantially larger due to the number of CCG categories that now exist in

each of the frontier cells in the graph-structured stack. As seen in Figure 3.9, a graph-structured stack

collapses all of the diagonal cells of the CKY chart into a single frontier cell. To improve the performance,

engineering tweaks are required such as re-evaluating the optimal size of the hash table. As opposed to

standard hash table implementations, it is best for the hash tables in the C&C parser to have extremely

low utilisation. The parser is optimising for rapid look-ups instead of low memory footprints, so the

tables are sized appropriately in order to avoid the majority of hash collisions.
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One advantage of the frontier cells representing large numbers of cells in the CKY chart is that fewer

redundant CCG categories are produced. In the CKY chart, two equivalent CCG categories may be pro-

duced but are not checked for equivalence until higher up in the chart structure. In the graph-structured

stack, these equivalent CCG categories are recognised at each frontier level. As there are only n frontier

levels, where n is the number of words, there are fewer places for redundancy. As the C&C parser will

only generate a given number of maximum CCG categories before aborting a parse, this results in higher

coverage numbers but lower parsing speeds for the shift-reduce parser.

6.3.2 Frontier Equivalence Checking

As part of the equivalence check for each CCG category in the shift-reduce algorithm, the frontiers of

both categories are compared. The two CCG categories must have frontiers composed of the same CCG

categories to be considered semantically equivalent. Initially each CCG category maintained a list of its

relevant nodes in the previous frontier, but this resulted in slow comparisons between CCG categories.

By caching these frontier lists and implementing them as a pointer, checking if two frontiers is equivalent

is reduced to a single pointer comparison. This caching infrastructure prepares the groundwork for later

performance optimisations used in frontier pruning (see Chapter 8).

6.4 Results

As the only thing to change is the core parsing algorithm, both parsers use the same parsing model. The

results for the shift-reduce and CKY C&C parsers should be near equivalent. Due to the complexity of

the algorithms and code involved, however, slight differences may occur.

During development, the GSS-based shift-reduce parser was tested against the results provided by the

base CKY C&C parser. The results from this evaluation are illustrated in Table 6.1 and were used in

identifying potential issues with the shift-reduce implementation. Parsing F-score for both labeled and

unlabeled dependencies are near equivalent. These results show empirically that the extension of the

graph-structured stack to the CCG formalism is practically sound. Major differences in parsing accuracy

would indicate an error in implementation.

Finally, the speed of the parsers is significantly different, with the CKY parser outperforming the shift-

reduce parser by a considerable margin. Due to the mature state of the CKY algorithm in the C&C parser,

the speeds were expected to be significantly different. As the C&C architecture has been tuned with the
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Parser Coverage Labeled F-score Unlabeled F-score Speed
(%) (%) (%) (sentences/second)

CKY C&C 99.01 86.37 92.56 55.6
SR C&C 98.90 86.35 92.44 48.6
CKY C&C Auto 98.90 84.30 91.26 56.2
SR C&C Auto 98.85 84.27 91.10 47.5
TABLE 6.1. Comparison of the CKY C&C parser to the SR C&C parser that utilises the
graph-structured stack. Auto indicates that automatically assigned part of speech tags
were used. All results are against the development dataset, Section 00 of CCGbank,
which contains 1,913 sentences.

CKY algorithm in mind, there have been many tweaks and optimisations that are not applicable or have

not yet been implemented in the shift-reduce algorithm. Whilst an attempt has been made to reproduce

obvious optimisations, reproducing all of them was not feasible in the time available.

Once all changes were tested, final evaluation was performed on Section 23 of CCGbank, illustrated in

Table 6.2. Mirroring the results seen on the development dataset, parsing F-score for both labeled and

unlabeled dependencies are similar.

In the final evaluation, the shift-reduce parser shows improved coverage over the CKY parser. This is due

to more efficient dynamic programming in the graph-structured stack. Complex sentences can produce

millions of CCG categories during parsing. To prevent excessive slowdowns, the C&C parser limits the

number of CCG categories that can be produced during parsing. As the shift-reduce parser creates fewer

CCG categories to parse a given sentence, more complex sentences can be parsed without hitting this

limit.

However, this coverage increase comes at the expense of parsing speed however. Higher hash table

utilisation and more time spent on complex sentences results in a slower overall parser. The parsing

speed of the shift-reduce parser is approximately 34% slower than the finely tuned CKY parser. Further

speed comparisons for this shift-reduce CCG parser will be made in Chapter 8, where the new features

provided by shift-reduce parsing allow for a novel method of pruning.

It is interesting to note the extreme differences in parsing speed between Section 00 and Section 23 of

CCGbank. Although both are of a similar size, the parsing speed (measured in sentences per second)

is nearly twice as fast on Section 23. This is due to Section 00 being dominated by a number of large

sentences composed of up to a hundred words.
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Parser Coverage Labeled F-score Unlabeled F-score Speed
(%) (%) (%) (sentences/second)

CKY C&C 99.34 86.79 92.50 96.3
SR C&C 99.58 86.78 92.41 71.3
CKY C&C Auto 99.25 84.59 91.20 82.0
SR C&C Auto 99.50 84.53 91.09 61.2
TABLE 6.2. Final evaluation of the CKY and SR CCG parsers on Section 23 of CCG-
bank, containing 2,407 sentences. Auto indicates that automatically assigned part of
speech tags were used.

6.5 Summary

Incremental CCG parsing has been previously achieved (Hassan et al., 2008) but this was only possible

by converting both CCG and CCGbank to use a deterministic grammar. Whilst this allowed for a ten

times increase in parsing speed compared to the C&C parser, parsing accuracy was substantially lower.

This is the first time a graph-structured stack has been implemented in a shift-reduce CCG parser and is

the first major contribution of this thesis. We have shown how to apply the graph-structured stack to CCG

and have handled any issues caused by the new formalism. By implementing a graph-structured stack,

shift-reduce CCG parsers can generate all possible derivations whilst still having comparable speed pro-

files to CKY parsers. Our results demonstrate that incremental CCG parsing is possible without sacrificing

accuracy for speed.

In later chapters, the novel features that the shift-reduce parsing state enables will be shown to sub-

stantially improve other tasks such as part-of-speech tagging and CCG supertagging. They will also be

shown to be effective as features in a pruning algorithm that allows for increased parsing speeds with

little impact on parsing accuracy.

Preliminary results from this chapter comparing the CKY and shift-reduce C&C parser implementations

have been accepted for publication under the title Frontier Pruning for Shift-Reduce CCG Parsing at the

Australasian Language Technology Workshop in December 2011.



CHAPTER 7

In-place POS Tagging and Supertagging

In this chapter, the concept of tightly integrating parsing and tagging is explored. Traditionally, there is

little interaction between components in the parsing pipeline. In the C&C parser, the only interaction

occurs when the parser requests more supertags from the supertagger. This is quite limited in scope but

has been used to improve parsing speed (Kummerfeld et al., 2010).

Due to the incremental nature of the shift-reduce algorithm, we can extract features from the parser state

and use them as inputs to the tagging processes. By providing a partial understanding of the sentence so

far, both the POS tagger and supertagger can make better informed and less ambiguous decisions. This

cycle continues after each new word is introduced to the incremental parser.

7.1 Motivation

Tagging is the process of assigning a specific category to a word in a corpus by analysing the word’s

context. A given word may be assigned different tags depending on the word’s function in the sentence,

leading to ambiguity in tagging a word. In most taggers, this ambiguity has been clarified by looking

at adjacent words in the sentence. As the tagger can only access surface features of the text, it lacks

a deeper understanding of how the sentence might be structured. This leads to sub-optimal tagging

decisions.

DecodingPoS Tagging Supertagging Parsing Scoring

FIGURE 7.1. As opposed to the traditional parsing pipeline used for CCG parsers (Fig-
ure 3.10), parsing is used as input to both the POS tagging and supertagging.
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S/NP

S/(S\NP)

∅ NP (S\NP)/NP NP

S\NP

S

FIGURE 7.2. In this graph-structured stack representing the parse for “I saw John”,
the second frontier is represented in bold.

We propose using incremental parsing to assist in these tagging decisions. This results in a parsing

pipeline that adds integration between the parser and the taggers, illustrated in Figure 7.1.

Many forms of tagging would benefit from understanding of how the sentence might be parsed. As

we have developed the incremental CCG parser in Chapter 6, it is now possible for the tagging process

to receive an update of how the sentence is being parsed before the next word is considered. This is

possible as shift-reduce parsing can process n − 1 words in the sentence before having to consider the

nth word. For the nth word, both the POS tagger and the supertagger could use features derived from

parsing the previous n− 1 words.

The novel features provided by incremental parsing are called frontier features and are a representation

of the current state of the parser, containing all possible CCG categories that can be created by the words

processed so far.

In the graph-structured stack shown in Figure 7.2, the frontier for the verb “saw” is represented in

bold. The frontier contains two categories for “saw”. One is the category supplied by the supertagger,

(S\NP)/NP , and has not yet been combined with anything. The other category, S/NP , has been

generated by forward composition and has already identified “I” as the subject of “saw”. Similar to

how humans incrementally parse sentences, an incremental parser expects certain constituents in the

upcoming input. Note that both the categories are looking for an NP on the right. This suggests that

the upcoming CCG category will either be a NP itself or interact with or produce an NP , such as a

determiner (NP/N ), an adjective (N /N ) or a noun (N ) that will later be type changed to a noun phrase

(NP ). Thus, analysing the frontier can result in less ambiguous and more accurate tagging decisions for

both the POS tagger and supertagger.
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The addition of frontier features impacts a substantial portion of the parsing pipeline. The incremental

parser produces frontier features, representing the understanding of the sentence so far. The POS tag-

ger uses these frontier features to improve POS tagging accuracy. The supertagger then uses both the

improved POS tags and the frontier features to improve supertagging accuracy. Finally, the incremental

parser uses the POS tags and supertags from the two previous steps to base future decisions on.

This concept is novel and has not yet been attempted in the literature. We believe that this will lead to

higher accuracy across the entire parsing pipeline and is an example of the advanced features possible

from the incremental parser introduced in Chapter 6.

7.2 Features

This work extends the maximum-entropy taggers described in Curran and Clark (2003). The base fea-

tures used by the original taggers will be described in addition to the novel frontier features introduced

by incremental parsing.

7.2.1 Base Features

The contextual predicates used to generate the features for both the POS tagger and supertagger are

illustrated in Table 7.1. If the contextual predicate returns true and the contextual predicate’s condition

holds, then the relevant feature is added.

These features include the raw text of surrounding words and the previous two assigned tags. The

supertagger additionally uses the tags assigned during POS tagging as this has shown to improve the per-

formance of supertagging and results in lower supertag ambiguity (Clark and Curran, 2004b). Finally,

for the POS tagger, additional features are activated when a word appears less than five times in the train-

ing corpus (freq(wi) < 5). This assists in disambiguating rare words by analysing their orthographic

properties.

7.2.2 Frontier Features

As seen in Figure 7.2, frontier features represent the current understanding of the sentence by the parser.

They can be used to assist in the tagging process by suggesting what the function upcoming words will

serve.
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Condition Contextual predicate
freq(wi) ≥ 5 wi = X
freq(wi) < 5 X is prefix of wi, |X| ≤ 4
(POS tagger) X is suffix of wi, |X| ≤ 4

wi contains a digit
wi contains uppercase char
wi contains a hyphen

∀wi ti−1 = X
ti−2ti−1 = XY
wi−1 = X
wi−2 = X
wi+1 = X
wi+2 = X

∀wi POSi = X
(supertagger) POSi−1 = X

POSi−2 = X
POSi+1 = X
POSi+2 = X

TABLE 7.1. Conditions and contextual predicates used in the POS tagger and supertag-
ger for generating features.

The training code of both the POS tagger and supertagger had to be extended to allow the consideration of

frontier features. To enable debugging and improve human readability, the frontier features are encoded

as a string representation of the CCG category. The frontier in Figure 7.2 would add the new features

(S\NP)/NP and S/NP for example.

7.3 Training

The training data for the POS tagging and supertagging was acquired from Sections 02-21 of CCGbank.

Preprocessing of the training data was necessary as the novel frontier features are generated by the parser

itself. To generate the frontier features, sentences were provided with gold standard POS and super tags

to the shift-reduce CCG parser. These sentences were then parsed and an output file was created that

contained the frontier that the parser had constructed for each word.

During preprocessing of the data, 3,189 sentences had to be discarded from the 39,604 sentences of

Sections 02-21, resulting in 91.95% coverage of the initial training data. This was due to the parser being

unable to reach a spanning analysis due to CCGbank using CCG rules or categories that are incompatible

with the CCG representation implemented in the C&C parser. Note that this low coverage only impacts
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the training phase of the parsing process, which has strict requirements as to what sentences make good

training data, and will not decrease the coverage of the tagger or parser in normal operation.

Finally, it is important to note that we are using gold supertags for generating the frontier lists. This is

similar to using gold POS tags in parsing. It is possible accuracy will decrease when in-place POS and

supertagging is directly integrated into the parsing pipeline. This work does not contain numbers for

automatically assigned frontier features, but in future work the evaluation methodology will be similar

to POS tags. Two separate results, one for gold frontier features and another for automatically assigned

(auto) frontier features, would be reported.

7.4 Results

For our experiments, we used the development section of CCGbank, Section 00, as our initial evaluation

of the in-place POS tagging and supertagging implementation.

Tagging accuracy has been split into two parts: single tagging and multi tagging. For POS tagging, only

the single tagging result is given as multi tagging is rarely used in practice.

7.4.1 Single Tagging

For single tagging, the Viterbi algorithm is used to select the sequence of tags. The Viterbi algorithm is

a dynamic programming algorithm that finds the most likely sequence of tags, given that certain tags are

more likely to transition to other tags. An example of this is in POS tagging, where a noun is likely to

follow a determiner, such as “the cat”.

The POS tagging results in Table 7.2 show improvements in POS tagging accuracy when frontier features

are added. Whilst per token accuracy increases by 0.21% this is still a substantial contribution consid-

ering the high baseline. Most importantly, per sentence accuracy increased by 3.39%. This result has

a number of implications. Frontier features, although assisting in per token errors, were most effective

in ensuring an entire sentence was correct. This shows that the features incremental parsing provides

allows the POS tagger an improved understanding of the sentence structure.

For supertagging, the evaluation becomes more complicated. As the supertagging process uses POS

tags as features, the errors produced by the POS tagger referenced in Table 7.2 have an impact on the
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Model Accuracy (tags) Accuracy (sentences)
Standard 96.80% 51.76%
Frontier 97.01% 55.16%

TABLE 7.2. POS tagging accuracy on Section 00 of the Penn Treebank, calculated
across both individual tags and entire sentences. Training data for POS tagger was Sec-
tions 02-21.

accuracy. To explore the impact the improved POS tagging model has on supertagging, we report three

different numbers

• Gold POS tags

• Frontier POS tags, which uses the Frontier POS model with improved accuracy from Table 7.2

• Standard POS tags, which uses the standard POS model from Table 7.2

Gold POS tags provide an oracle score, or the theoretical maximum supertagging accuracy we could

attain with a perfect POS tagger. The frontier and standard POS models provide a better indication of real

world performance. By comparing the three models, we can identify the effect errors in POS tagging

have on supertagging accuracy.

In Table 7.3, the evaluation for supertagging is provided. With gold POS tags, the contribution of frontier

features can be measured independently. As opposed to POS tagging, frontier features lead to a substan-

tial improvement in both per token and per sentence accuracy. On a per token basis, the frontier features

improve supertagging accuracy by 1.30% over the standard supertagging model. On a per sentence ba-

sis, the improvement increases to 1.92%. This is not unexpected as supertagging is “almost parsing” and

hence would be expected to benefit from being provided partial sentence structure by the incremental

parser.

As gold POS tags are the oracle, it is interesting to examine how automatically assigned POS tags impact

accuracy. Two POS models are provided: the standard model and the frontier model from Table 7.2.

Even without adding frontier features to the supertagger, supertagging accuracy is improved by using

the POS model using frontier features. This can be seen by comparing the standard supertagging model

with and without the frontier POS tagging input. Per token accuracy increases from 92.25% to 92.94%

(+0.69%) and per sentence accuracy increases 40.25% to 41.92% (+1.67%). This shows that even a

small decrease in the number of errors from the previous components in the parsing pipeline can have a

substantial impact on future accuracy.
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MODEL ACCURACY (TAGS) ACCURACY (SENTENCES)
Standard (gold POS) 93.31% 43.81%
Frontier (gold POS) 94.61% 45.74%
Standard (frontier POS) 92.94% 41.92%
Frontier (frontier POS) 94.25% 43.91%
Standard (standard POS) 92.25% 40.25%
Frontier (standard POS) 93.67% 42.34%

TABLE 7.3. Supertagging accuracy on Section 00 of CCGbank, calculated across both
individual tags and entire sentences. Frontier and standard POS use the POS tags from
the experiment in Table 7.2.

7.4.2 Multi Tagging

The purpose of multi tagging is different to that of single tagging. Multi tagging aims to select any tags

which are within a given fraction β of the most probable tag. The Viterbi algorithm used for single

tagging can not be extended to select the top n tags per state. To select these most likely tags per state,

the forward-backward algorithm is used. The forward-backward algorithm can be used to find the most

likely set of states at any point in time, but cannot be used to find the most likely sequence of states.

As such, it is less accurate on a sentence level than the Viterbi algorithm, but provides good results for

selecting multiple tags.

In Table 7.4, we explore the impact that frontier features have on multi tagging. The results are separated

into three different accuracy measures: one across gold POS tags, another over POS tags produced by the

frontier POS model and the final across POS tags produced by the standard POS model. The gold POS

FEATURES β k CATS/ ACC SENT CATS/ ACC SENT CATS/ ACC SENT
WORD (GOLD) ACC WORD (FRTR) ACC WORD (STD) ACC

St
an

da
rd

0.075 20 1.25 97.73 69.84 1.26 97.33 65.82 1.26 96.84 62.70
0.030 20 1.41 98.26 75.34 1.41 97.89 71.37 1.41 97.46 68.14
0.010 20 1.68 98.69 80.50 1.68 98.38 76.53 1.69 98.02 73.58
0.005 20 1.94 98.84 82.09 1.94 98.54 78.12 1.94 98.22 75.11
0.001 150 3.46 99.36 89.46 3.46 99.08 85.03 3.47 98.86 82.54

Fr
on

tie
r

0.075 20 1.19 98.04 71.03 1.20 97.65 66.78 1.20 97.30 64.06
0.030 20 1.32 98.47 76.64 1.32 98.09 72.39 1.33 97.74 69.56
0.010 20 1.55 98.79 80.90 1.55 98.48 76.93 1.56 98.19 74.43
0.005 20 1.76 98.90 82.31 1.76 98.60 78.57 1.77 98.38 76.47
0.001 150 2.96 99.39 89.51 2.96 99.12 85.37 3.00 98.95 83.28

TABLE 7.4. Multi tagger ambiguity and accuracy on the development section, Section 00.
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tags provide an optimistic upper-bound on parsing accuracy. As our focus is on real world application,

we will primarily discuss the supertagging accuracy attained using the frontier POS tags.

For the same beta (β) levels, the frontier multi tagging model has higher accuracy and lower ambiguity

than the standard multi tagging model currently used by the C&C parser. For example, at β = 0.0075 we

find that the frontier model achieves a per token accuracy of 97.33% whilst the standard model achieves

an accuracy of 97.65%. This is achieved with less ambiguity by the frontier model, however, as can be

seen by the smaller number of categories assigned per word compared to the standard model (1.20 by

the frontier model compared to 1.26 by the standard model).

Most impressively, for an extremely low beta level of 0.001, the ambiguity is decreased from 3.46

categories per word to 2.96 categories per word for nearly equivalent accuracy. As parsing speed is

directly related to the number of CCG categories assigned per word, this suggests that improved frontier

pruning would substantially improve the parsing speed of the C&C parser without an impact on parsing

accuracy.

7.5 Final Results

As the results in the previous section were attained whilst improving the in-place POS tagging and su-

pertagging model, it is possible that over-fitting occurred. For this reason, a final evaluation is performed

against a data set that has not previously been used for the purposes of development. All experiments in

this section will be on the final evaluation section of CCGbank, Section 23.

7.5.1 Single Tagging

In Table 7.5, the final evaluation for POS tagging accuracy is shown. The frontier model is shown to

improve per token POS tagging accuracy by 0.28%, in line with the 0.21% improvement seen during

evaluation. For sentence level POS tagging, the frontier model is shown to improve accuracy by 3.01%.

This is a small decrease (3.39% improvement down to 3.01%) from the improvement seen in the de-

velopment evaluation, but again suggests that the small per token accuracy tagging increase achieves

substantial improvements on a per sentence level.

The final single tag evaluation for supertagging is provided in Table 7.6. As before, the gold POS tags

allow for evaluating the impact that the frontier features alone have on the supertagging model. In the
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MODEL ACCURACY (TAGS) ACCURACY (SENTENCES)
Standard 97.20% 57.86%
Frontier 97.48% 60.87%

TABLE 7.5. POS tagging accuracy on Section 23 of the Penn Treebank, calculated
across both individual tags and entire sentences. Training data for POS tagger was Sec-
tions 02-21.

MODEL ACCURACY (TAGS) ACCURACY (SENTENCES)
Standard (gold POS) 93.72% 46.28%
Frontier (gold POS) 95.00% 47.65%
Standard (frontier POS) 93.14% 44.12%
Frontier (frontier POS) 94.41% 45.12%
Standard (standard POS) 92.53% 42.63%
Frontier (standard POS) 93.88% 43.50%

TABLE 7.6. Supertagging accuracy on Section 23 of CCGbank, calculated across both
individual tags and entire sentences.

final evaluation, frontier features by themselves are shown to improve per token accuracy by 1.28%

compared to 1.30% in development. This suggests a low variation in per token supertagging accuracy

between data sets. Sentence level accuracy does not experience this low variation, however. Frontier

features improve sentence level accuracy by 1.37% compared to 1.92% in development. This suggests

that sentence level accuracy is closely tied to the complexity and length of the sentences processed.

Further investigations into the impact that sentence complexity and length have are planned.

This final single tag evaluation convincingly shows that POS tagging and supertagging with the addition

of frontier features results in substantially improved accuracy on both a per token and per sentence basis.

7.5.2 Multi Tagging

The final evaluation for multi tagging, seen in Table 7.7, mirrors the results seen during the development

evaluation. For the same beta levels, the frontier multi tagging model outperforms the standard supertag-

ging model across all metrics. Most importantly, the accuracy is equivalent or higher for a lower level of

tag ambiguity. For the lowest beta level (0.001), ambiguity is decreased from 3.40 categories per word

to 2.91 categories per word. This shows little variance to the development data set, where the ambiguity

is decreased from 3.46 categories per word to 2.96 categories per word.
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FEATURES β k CATS/ ACC SENT CATS/ ACC SENT CATS/ ACC SENT
WORD (GOLD) ACC WORD (FRTR) ACC WORD (STD) ACC

St
an

da
rd

0.075 20 1.25 97.88 71.72 1.25 97.40 67.67 1.26 96.86 63.85
0.030 20 1.41 98.41 77.80 1.41 98.02 74.11 1.56 97.53 70.46
0.010 20 1.68 98.77 81.04 1.69 98.42 77.53 1.70 98.02 74.43
0.005 20 1.93 98.90 82.40 1.95 98.61 79.42 1.95 98.28 76.45
0.001 150 3.40 99.43 90.14 3.43 99.18 86.72 3.44 98.94 83.57

Fr
on

tie
r

0.075 20 1.19 98.12 72.04 1.19 97.73 68.44 1.20 97.28 64.84
0.030 20 1.31 98.53 77.67 1.32 98.20 73.89 1.33 97.82 70.46
0.010 20 1.54 98.87 81.27 1.55 98.58 77.76 1.56 98.27 75.01
0.005 20 1.75 98.98 82.76 1.76 98.74 79.84 1.77 98.49 77.58
0.001 150 2.91 99.47 90.63 2.94 99.23 87.03 2.97 99.06 85.05

TABLE 7.7. Multi tagger ambiguity and accuracy on Section 23.

This definitively shows that frontier features provide useful information for the purpose of supertagging.

By producing the equivalent or higher accuracy for a lower level of tag ambiguity, parsing speed and

accuracy will be substantially improved.

7.6 Summary

In this chapter, we have extended the C&C POS tagger and supertagger with novel frontier features, mo-

tivated by the capabilities of the shift-reduce CCG parser developed in Chapter 6. Due to the incremental

nature of the shift-reduce CCG parser, it is now possible for the tagging and parsing process to interact

by passing features from the parser back into the tagger.

The features generated from this interaction improve accuracy and ambiguity levels for both POS tagging

and supertagging on Sections 00 and 23 in CCGbank substantially. Whilst POS tagging shows only a

0.21% variation, there is a 3.39% jump in sentence level accuracy. This indicates that when the frontier

features are used, they help define and improve the structure of the sentence. This shows that even a

small decrease in the number of errors from the previous components in the parsing pipeline can have a

substantial impact on future accuracy.

These same features could be used in other components to improve accuracy and decrease ambiguity.

In the next chapter, we explore whether the frontier features used to improve supertagging accuracy can

also be used as the basis of a novel method of pruning.



CHAPTER 8

Frontier Pruning

The purpose of frontier pruning is to cut down the search space of the parser by only considering partial

derivations that are likely to form part of the highest-scoring derivation. Like adaptive supertagging,

it exploits the idea that the only partial derivations the parser needs to generate are those used by the

highest-scoring derivation. The model is trained using the parser’s initial unpruned output and aims to

distinguish between partial derivations that are necessary and those that are not. By eliminating a large

number of those unnecessary partial derivations, parsing ambiguity is significantly decreased.

This approach is similar to beam search as frontier pruning removes partial derivations once it is likely

they will not be used in the highest-scoring derivation. For certain instances, such as n-best re-ranking,

beam search would be preferred as derivations without the highest score are still useful in the parsing

process. For one best parsing, however, the parser may waste time generating these additional derivations

when it could be known in advanced that they will not be used. This could occur during attachment

ambiguity where, although the parser is guaranteed to select one attachment, the other attachment may

be constructed as it is valid and still competitive when considered by beam search’s criteria.

8.1 Pruning Overview

In this chapter, we introduce a novel form of pruning based upon classifier-based pruning. As previously

mentioned, there are millions of possible derivations that a parser needs to explore. Our method of

pruning is based upon a binary classifier. After each possible step in the parser, the binary classifier is

run. The binary classifier evaluates the current branch of the search. If the branch appears promising,

parsing is allowed to continue. Otherwise, parsing on this branch is aborted and other potential branches

are explored.

69
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If the binary classifier has low recall, then it is likely that the correct derivation will be removed ac-

cidentally. If the binary classifier has low precision, then parsing reverts to traditional parsing as all

nodes are considered. Parsing speed is likely to suffer in this case, however, as pruning would require

computational overhead but result in no speed gains.

As the C&C parser has not operated using this binary classifier based pruning previously, it was neces-

sary to implement the binary perceptron classifier and explore the features that could be used to guide

classifications.

8.2 Training and Processing

We train a binary averaged perceptron model (Collins, 2002) on parser output generated by the SR C&C

parser using the standard parsing model. Once the base parser has successfully processed a sentence,

all partial derivations that lead to the highest-scoring derivation are marked. For each partial derivation

in the GSS, the perceptron model attempts to classify whether it was part of the marked set. If the

classification is incorrect, the perceptron model updates the weights appropriately.

During processing, pruning occurs as each frontier is developed. For each partial derivation, the percep-

tron model classifies whether the partial derivation is likely to be used in the highest-scoring derivation.

If not, the partial derivation is removed from the frontier, eliminating any paths that the partial deriva-

tion would have generated. Perfect frontier pruning would allow only a single derivation, specifically

the highest-scoring one, to develop.

8.2.1 Potential Gains

To establish bounds on the potential search space reduction, the size of the marked set compared to the

total tree size was tracked over all sentences in the training data. This represents the size of the tree

after optimal pruning occurs. Two figures are presented, one with gold supertags and the other with

supertags applied by the C&C supertagger. Gold supertags only provide one CCG category per word and

represents an optimal supertagger with nearly no ambiguity.

As can be seen in Table 8.1, the size of the marked set is 10 times smaller for gold supertags and 15

times smaller for automatically supplied supertags. This places an upper-bound on the potential speed

improvement the parser may see due to aggressive frontier pruning assuming frontier pruning adds no
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PRUNING TYPE REDUCED SIZE

Average pruned size (gold supertags) 9.6%
Average pruned size 6.7%

TABLE 8.1. Recall of the marked set from the frontier pruning algorithm across all
trees and the size of the pruned tree compared to the original tree.

overhead. Note that the core parsing algorithm is only one step of many in the parser pipeline. Other

components, such as POS tagging, CCG supertagging, scoring and decoding together take substantial

time as well.

8.3 Improved Features for Frontier Pruning

For frontier pruning to be effective, the model must be able to accurately distinguish between partial

derivations that will be used in the highest-scoring derivation and those that shall not. As the features of

the C&C parser dictate the highest-scoring derivation, the features used for frontier pruning have been

chosen to be similar. For a full description of the features used in the C&C parser, refer to Clark and

Curran (2007c).

Each partial derivation is given a base set of features derived from the current category. The initial

features include a NULL which all categories receive, the CCG category itself and whether the category

was assigned by the supertagger. There are also features that encode rule instantiation, including whether

∅ NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP

S\NP (NP\NP)/NP (S\NP)\(S\NP)

S S\NP

S

I saw John with binoculars

PRP VBD NNP IN NNS

FIGURE 8.1. A graph-structured stack (GSS) representing an incomplete parse of the
sentence “I saw John with binoculars”. The nodes and lines in bold were provided by
the supertagger, whilst the non-bold nodes and lines have been created during parsing.
The light gray lines represent what reduce operation created that lexical category.
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Feature Type Example
Category S\NP

Binary Composition (S\NP)/NP and NP
Forward Application True

Head Word saw
Head POS VBD

Previous Frontier NP
Next Frontier ((S\NP)\(S\NP))/NP
Next Frontier (NP\NP)/NP

TABLE 8.2. Example features extracted from S\NP in the third frontier of Figure
8.1. For the frontier features, bold represents the highest-scoring feature selected for
contribution to the classification decision.

the category was created by type raising, a lexical rule, or any CCG combinatory rule. If the category was

created by a CCG combinatory rule, the type of rule (such as forward/backward application and so on)

is included as a feature. These features allow for a naïve representation of the local composition of the

CCG tree and allow the machine learning algorithm to generalise over combinatory rules and categories.

Features representing the past decisions the parser has made are also included. Note that current rep-

resents the current category and left/right is the current category’s left or right child respectively. For

categories created by unary rules, a tuple of [current,current→left] is included as a feature. For cate-

gories created by binary rules, a tuple of [current→left, current, current→right] is included. If a category

is a leaf, then two features [current, word] and [current, POS] are included. Features representing the

root category of the partial derivation are also included, encoding the category head’s word and POS tag.

Finally, additional features are added that represent the possible future parsing decisions. This is

achieved by adding information about the remaining partial derivations on the stack (the past frontier)

and the future incoming partial derivations (the next frontier). These do not exist in the C&C parser

and are only possible due to the implementation of the GSS. For each category in the previous fron-

tier, a feature is added of the type [previous, current]. For the next frontier, which is only composed

of supertags at this point, the feature is [current, next]. These features allow the pruning classifier to

determine whether the current category is likely to be active in any other reductions in future parsing

work. As we only want to score the optimal path using the previous and next features, only the highest

weighted of these features are selected. The rest of the previous and next features are discarded and do

not contribute to the classification.
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An example of this can be seen in Table 8.2, where the features for the partial derivation of S\NP is

enumerated from the context of Figure 8.1.

These features differ to the traditional features used by shift-reduce parsers due to the addition of the

GSS. As traditional shift-reduce parsing only considers a single derivation at a time, it is trivial to

include history further back than the current category’s previous frontier. As GSS-based shift-reduce

parsing encodes an exponential number of states, however, the overhead of unpacking these states into a

feature representation is substantial. Our approximation of selecting the highest weighted previous and

next frontier features approximates the non-deterministic shift-reduce solution.

8.4 Balancing Pruning Features and Speed

For frontier pruning to produce a speed gain, enough of the search space must be pruned in order to

not just compensate for the additional computational overhead of the pruning step itself but also reduce

ambiguity in the parsing process. This is a challenge as the C&C parser is written in C++ with a focus

on efficiency and already features substantial lexical pruning due to the use of supertagging.

For this reason, there were instances where expressive features needed to be traded for simpler fea-

tures in the frontier pruning process. Whilst these simpler features may not prune as effectively, their

computational overhead would offset the speed gains associated with the reduced search space. The

complexity of the frontier pruning features may be dictated by the speed of the core parser itself, with

more expressive features being possible if the core parser is slower.

The implementation of these features also had to focus on efficiency. To decrease hash table stress and

improve memory locality of the hash table storing the feature weights, only a subset of features were

stored. This feature subset was obtained from the gold standard training data as it contains far less

ambiguity than the same training data which uses the larger set of lexical categories supplied by the

supertagger.

Hash tables were used for storing the relevant feature weights. Simple hash based feature representation

were used for associating features with weights to reduce the complexity of equivalence checking. The

hash values of features that were to be reused were also cached to prevent recalculation, substantially

decreasing the computational overhead of feature calculation.
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8.4.1 Hash-Based Feature Representations

The speed of frontier pruning is highly related to the overhead of generating the features of the current

parse context. The first version of the frontier pruning algorithm used features based upon strings.

For a prototype, these string features were human readable and assisted with both debugging and logic

checking. Even with aggressive caching, however, these string based features caused frontier pruning to

result in a speed loss.

One possibility to decrease the computational overhead of feature calculation was to use the hash values

of features as the features themselves. During parsing, these hashes have already been generated by the

parser for checking whether two objects are equivalent. Re-using these hashes only results in a memory

look-up rather than any expensive calculations.

Using the feature hashes has been considered previously in the literature in two variations, termed feature

mixing and hash kernels. Feature mixing does not handle collisions and has no theoretical guarantees

on the error it produces. Hash kernels provide both a theoretical guarantee on the distortions introduced

and provide a method to reduce these distortions through using multiple hashing.

8.4.1.1 Feature Mixing

Feature mixing projects a high dimensional feature vector into a lower dimensional feature hash. The

original feature vector is discarded and the feature weight is stored at the relevant feature hash location

in a hash table. As the size of the hash table can be user specified, this allows for a trade-off between

memory use and application accuracy. Feature mixing allow expressive statistical NLP systems on re-

source constrained devices without a substantial loss in accuracy. Whilst this results in collisions, the

memory savings can be immense, especially if the memory use of the features themselves are large.

Collisions in feature mixing are handled by the machine learning algorithm. If feature fa and feature fb

collide in a specific position n of the hash table, the feature weight at n is representative of fa∨fb. If the

undistorted feature weights of fa or fb differ substantially (i.e. w(fa) � w(fb)) then such a collision

may have a large impact on accuracy.

Even with this substantial drawback, feature mixing has been used successfully in a number of applica-

tions. In Ganchev and Dredze (2008), four machine learning algorithms are tested on four different NLP
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ObjA ObjB

Bit Vector

FIGURE 8.2. An example of a Bloom filter with k = 3. Object A is considered in the
Bloom filter whilst Object B is not. Note that there is a possibility Object A is a false
positive. This is the basis of hash kernels.

problem domains. They show that the memory use of the machine learning model can be reduced by

70% without a significant loss in performance.

8.4.1.2 Hash Kernels

Hash kernels (Shi et al., 2009; Weinberger et al., 2009) are an extension of the feature mixing method

that allow for theoretical bounds on the impact that dimensionality reduction will have on the feature

weights. This is achieved through multiple hashing which alleviates the problems caused by collisions,

as seen in feature mixing.

The technique of multiple hashing in hash kernels is similar to a Bloom filter. A Bloom filter is a space-

efficient probabilistic set data-structure that does not allow object removal. The data-structure is based

around a single large bit-vector, with all bits initially set to an inactive state. To insert an object into a

Bloom filter, an object is hashed k times and each of the k relevant Bloom filter locations are activated.

To check if an object is contained in a Bloom filter, each of the k relevant Bloom filter locations are

checked to ensure they are active. If any one location is inactive, the object was never inserted into

the Bloom filter. Note that this may return false positives, but not false negatives, and the more objects

inserted into the Bloom filter the higher the false positive rate. An example of this can be seen in Figure

8.2.

This same technique is used by hash kernels and is an extension on the feature mixing method. The hash

kernel takes a high dimensional feature vector and converts it into multiple lower dimensional feature

hashes. Whilst the number of collisions is increased, each feature now has multiple feature weights
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that it can modify. This allows for a better approximation of the original undistorted feature weight by

varying each feature weight by a smaller amount than single hashing would require.

Using this method, feature spaces previously inconceivable have been processed. Weinberger et al.

(2009) train a model for email spam prediction with data obtained from Yahoo. For features, each

word obtained from the emails of the 400,000 test users were split into two features – the basic word

word and a user-tagged word worduser that allows for personalised spam filtering. As the email corpus

contained a vocabulary of 40 million unique tokens, the feature space would explode to 16 trillion

possible personalised features, which is far too many for traditional machine learning models. Using

hash kernels, however, this large set of features can be processed and they show an error rate reduction

of 30%. The error rate reduction is possible only due to the immense feature space and is processed with

a finite memory guarantee due to the use of hash kernels.

For high-speed classification applications, there is a major drawback to hash kernels. For each feature

you traditionally retrieve a single feature weight, incurring a single memory look-up. With the hash

kernel method, each feature incurs k memory look-ups for the k feature weights that are required. In

practice, this can slow down the classification process substantially.

8.4.1.3 Feature Hashing Implementation in Frontier Pruning

For our case, the overhead of calculating k hashes prevented the efficient use of hash kernels. As the

parser only calculates and stores one hash, each object would require k−1 additional hashes. Calculating

additional hashes would remove any advantage of using the stored hash. Indeed, whilst the frontier

pruning feature space is large, it is not large enough to warrant the additional code complexity required

by the hash kernel.

For this reason, a modified version of feature mixing was employed. Feature mixing aims to allow for

expressive statistical models to be used on resource constrained devices. The aim of feature mixing in

our case is different, focusing on preventing the overhead of additional feature generation and improving

the efficiency of the classification process.

Feature mixing in our case is represented by either a unary hash or a binary hash. All features, both unary

and binary, are represented by two 64 bit hashes. The hashing function is computationally minimal and

involves one shift and two xors for each feature. For the feature f composed of 64 bit unsigned numbers

fa and fb, the hash function is:
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h({fa, fb}) = (fa ⊕ fa >> 32)⊕ fb

The shift is required to differentiate h({fa, fb}) from h({fb, fa}).

A unary hash represents a single piece of information combined with a feature type. Imagine repre-

senting the unary feature that stated the current node was a CCG category with the label NP/N . First,

the hash of the CCG category NP/N would be taken, producing (for the sake of the example) 0x9F8E.

Second, the arbitrarily specified feature identifier hash for “unary ccg category” is retrieved, producing

0xCCA0. This would produce the feature {0xCCA0, 0x9F8E} which could then be used in the hashing

function defined above. The arbitrarily specified feature identifier hash is necessary as it allows multiple

features of the form {_, 0x9F8E}.

A binary hash represents two pieces of information combined with the feature type. Imagine we were

creating the binary feature stating the current node was created by combining (S\NP)/NP and NP .

Again, we retrieve the hash for these two CCG categories, with (S\NP)/NP = 0x4473 and NP =

0x8018. This produces the non-unique feature {0x4473, 0x8018}. To label the feature with the feature

type, we retrieve the arbitrarily specified feature identifier hash for “binary combinatory forming” which

is 0xF6A2. Finally, we combine this with the first piece of information through xoring. This produces

the unique feature {(0x4473⊕ 0xF6A2), 0x8018}.

The core hash table implementation used is the Google Sparsehash library. The Google Sparsehash

library contains hash table implementations optimised for both space and speed. In our work, only the

hash table implementation optimised for speed was used. This comes at the price of a higher memory

overhead, but for the C&C parser trading memory use for speed is a reasonable decision.

8.4.2 Memoisation of Frontiers

Many of the binary feature operations involve re-using hashes from the previous and next frontiers.

Features of the style h({fconst, fcurrent}) are constantly recreated although fconst never changes. To

minimize repeated work, once a previous or next frontier features set has been computed, they are

cached in the style h({fconst, _}) When the frontier feature list is to be used with a new fcurrent, the

second value of the cached feature is replaced with fcurrent. This ensures fast look-up and no redundant

computations. Hence, a frontier is only traversed once to create the hash features that are required.
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8.4.3 Restricting Feature Set Size

As part of frontier pruning, it is important to keep the feature set size as small as possible for two primary

reasons. First, the feature set size is related to the number of possible collisions that will occur due to

feature mixing. Second, the fewer feature weights that need to be stored, the more efficient feature

look-up will be in the hash table.

To minimize the size of the feature set, only the features seen in the gold supertag training data were

used. By providing gold supertags, both the features and the search space are substantially smaller than

in full parsing. This is due to the lower ambiguity levels provided by gold supertags compared to the

multiple supertags supplied by the supertagger. As can be seen in Table 8.1, even given gold supertags

the parser still generates many CCG categories that will never be needed in the final derivation.

8.5 Improving Recall in Frontier Pruning

Compared to the unmarked set, the marked set of partial derivations used to create the highest-scoring

derivation is small. Due to how strict the CCG formalism is, the recall of this marked set must be 100%.

If a single CCG category from the marked set is pruned accidentally, the accuracy will be negatively

impacted. The loss of a single category may even mean it is impossible to form a spanning analysis.

To prevent this loss of accuracy and coverage, the recall of the marked set must be improved whilst still

pruning as many unnecessary categories from the parsing process as possible. We explore modifying

the threshold of the perceptron algorithm to allow for a trade-off between precision and recall. For more

details about the perceptron algorithm, refer to Chapter 5.

Traditionally, a binary perceptron classifier returns true if w · x > 0, else false, with w being a vector

of weights for each feature and x being a binary vector indicating whether a feature was active. If we

wanted to improve recall, we can decrease the perceptron threshold to a level lower than zero. This

artificially boosts the instances which were just below the perceptron threshold level of zero, allowing

them to be considered as a positive class. As such, we can increase the recall of the true decisions in

frontier pruning by allowing through borderline decisions. In our experiments, the perceptron threshold

level will be referred to as λ and results in a slightly modified classifier of the form w · x > λ.
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Identifying the optimal threshold value is an important factor for frontier pruning. Too high a recall value

would prevent pruning any parts of the parse tree whilst too low a threshold reverts back to traditional

unpruned parsing. This value is determined experimentally using the development dataset.

8.6 Results

For frontier pruning, we used the development section of CCGbank, Section 00, as the testbed for the

frontier pruning implementation.

8.6.1 Tuning the Perceptron Threshold Level

In Table 8.3, we performed testing on the perceptron threshold level λ. Our experiments revealed there

was no substantial improvement in either labeled or unlabeled F-score due to decreasing λ. Further

investigation revealed that frontier pruning is successful for the same reason the PARSEVAL measure

is not (see Section 4.2.1). For many derivations in CCG, there are multiple structurally different CCG

trees exist that have the same semantics. For PARSEVAL this represented a major issue as equivalent but

structurally different derivations were penalised. For frontier pruning, this is a major benefit of CCG. By

providing multiple structurally different CCG trees that are equally correct, a mistake in frontier pruning

does not necessarily prevent the correct output.

Decreasing λ did result in slower parsing speeds, as expected. Unexpectedly however, the frontier

pruning parsers with λ = −1 and λ = −3 have the highest coverage of all parsers, including the CKY

and shift-reduce parsers introduced previously (see Chapter 6). This was not expected as mistakes in

frontier pruning, specifically aggressive pruning, were likely to prevent successful analyses rather than

assist in producing them. This suggests that for some sentences, aggressive pruning was necessary as

the sentence was too large to successfully parse otherwise. By performing aggressive frontier pruning,

the correct derivation could develop before the maximum number of categories were produced. Once

the maximum number of categories are produced, the C&C parser aborts parsing to prevent excessive

slow-downs.

From this, we have shown that ineffective frontier pruning can be as slow as traditional parsing and

that modifying the perceptron threshold does not improve accuracy or speed for this task. Thus, all

experiments from this point forward will use λ = 0.
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MODEL COVERAGE LABELED F-SCORE UNLABELED F-SCORE SPEED
(%) (%) (%) (sents/sec)

CKY C&C 99.01 86.37 92.56 55.6
SR C&C 98.90 86.35 92.44 48.6
FP λ = 0 99.01 86.11 92.25 61.1
FP λ = −1 99.06 86.16 92.23 56.4
FP λ = −2 99.01 86.13 92.19 53.9
FP λ = −3 99.06 86.15 92.21 49.0
CKY C&C Auto 98.90 84.30 91.26 56.2
SR C&C Auto 98.85 84.27 91.10 47.5
FP λ = 0 Auto 98.80 84.09 90.97 60.0

TABLE 8.3. Comparison to baseline parsers and analysis of the impact of threshold
levels on frontier pruning (FP). The perceptron threshold level is referred to as λ. All
results are against the development dataset, Section 00 of CCGbank, which contains
1,913 sentences.

8.6.2 Frontier Pruning Results

Table 8.3 presents a comparison between the accuracy and speed of three C&C parser variations. The

base CKY parser, the shift-reduce parser developed in Chapter 6 and the frontier pruning assisted parser

developed in this chapter. Frontier pruning runs on a modified version of the shift-reduce parser, so all

speed improvements will use it as the base parsing speed.

In the table, we see that the frontier pruning parser with λ = 0 achieves the fastest parsing speeds of

all parser variations. Unfortunately, frontier pruning reduces parsing accuracy by 0.30% on average

when compared against the CKY C&C parser. This is not an entirely negative result, however, as it

is possible the accuracy improvements provided by performing in-place POS tagging and supertagging

with incremental parsing (see Chapter 7) may mitigate these accuracy losses. As the time to perform

this work was limited, these experiments have not yet been performed.

From Chapter 6, the shift-reduce parser is found to be approximately 34% slower than the CKY parser on

which it is based. These initial experiments suggest that frontier pruning can improve parsing speed by

at least 26%, bringing the parsing speed of shift-reduce parser near to the levels of the CKY algorithm. It

may be possible to produce a CCG parser with all of the benefits of incremental parsing whilst operating

at speeds near to that of traditional non-incremental CKY parsing.
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MODEL COVERAGE LABELED F-SCORE UNLABELED F-SCORE SPEED
(%) (%) (%) (sents/sec)

CKY C&C 99.34 86.79 92.50 96.3
SR C&C 99.58 86.78 92.41 71.3
FP λ = 0 99.38 86.51 92.25 95.4
CKY C&C Auto 99.25 84.59 91.20 82.0
SR C&C Auto 99.50 84.53 91.09 61.2
FP λ = 0 Auto 99.29 84.29 90.88 84.9

TABLE 8.4. Final evaluation on Section 23 of CCGbank for the top performing models
from Table 8.3, containing 2,407 sentences.

8.7 Final Results

The final evaluation for this work uses the evaluation section of CCGbank, Section 23. This allows

for a fair evaluation as it is possible over-fitting occurred on the development dataset, especially when

parameters such as λ or feature set size and expressiveness were optimised based upon the results.

Table 8.4 reports the final speed and accuracy evaluated over Section 23 of CCGbank. The accuracy

numbers reported for final evaluation mirror those seen in the development evaluation. Frontier pruning

caused on average a 0.30% decrease in both labeled and unlabeled dependency F-score compared to the

C&C CKY parser. In contrast to the evaluation, the coverage of both the shift-reduce parser, both with

and without frontier pruning, is higher than the C&C CKY parser. Compared to the coverage from the

shift-reduce parser, however, there is 0.20% decrease. This suggests that frontier pruning is preventing

the parser finding spanning analyses due to aggressive pruning.

Finally, frontier pruning has improved the speed of the shift-reduce C&C parser by 39%, an improvement

over the speed increase seen during evaluation. Longer sentences seem to have a higher impact on

the speed of the frontier pruning algorithm due to the increased computational complexity of feature

generation. This indicates that implementing a form of beam search may be beneficial, retaining only

the top k scoring states in a frontier. Currently all partial derivations that are greater than the perceptron

threshold level λ are kept.

8.8 Discussion

As the C&C parser is already highly tuned and thus extremely fast, the optimal balance between feature

expressiveness and accurate pruning is difficult to achieve. It is important to note that this suggests
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that frontier pruning may be more effective when implemented on slower parsers than the C&C parser.

More work needs to be done on reducing the number of computationally intensive feature look-ups and

calculations. Even when using the gold-standard subset of the features, the feature look-up process

accounts for the majority of the slow-down that the frontier pruning algorithm causes.

The C&C code has been highly optimised to suit CKY parsing. It should be possible to improve the GSS

parser to be directly competitive with the CKY implementation. The frontier pruning provides speed

increases for the GSS parser, allowing it to be competitive with the original CKY parser, but with an

improved GSS parser, we could expect further improvements over the original CKY parser.

We have also shown that whilst pruning is occurring at the lexical level due to supertagging, substantial

speed-ups are still possible by performing pruning during the parsing process itself.

8.9 Summary

In this chapter, we present a novel form of pruning that takes advantage of the features generated by the

shift-reduce parser from Chapter 6. Though the shift-reduce CCG parser is 34% slower than the CKY

parser on which it is based, we show that by performing frontier pruning on the GSS, the speed of the

parser can be improved by 39% whilst only incurring a small accuracy penalty. This method shows it

is possible to attain competitive speeds using a shift-reduce parser even when exploring the full search

space.

Further improvements to either the base GSS implementation or the pruning algorithm are likely and will

be complimentary. Modification of the perceptron threshold level (λ) was shown to be an ineffective

method of weighting the classifier. We are likely to explore other methods of weighting that will be

more effective and theoretically better sound. With additional optimisation of both the model and the

feature set, we believe the speed and accuracy of the frontier pruned shift-reduce CCG parser can be

further increased.

Preliminary frontier pruning results from this chapter have been accepted for publication under the title

Frontier Pruning for Shift-Reduce CCG Parsing at the Australasian Language Technology Workshop

2011.



CHAPTER 9

Conclusion

In this chapter, we describe the future directions for the work described in this thesis and summarise the

conclusions that we draw from our work.

9.1 Future Work

The graph-structured stack based incremental parser described in Chapter 6 is not fully optimised com-

pared to the CKY algorithm that exists in the base C&C parser. Our next step of development is imple-

menting the missing optimisations used by the CKY algorithm in the shift-reduce algorithm and graph-

structured stack. We have shown that incremental parsing can be competitive with non-incremental

methods. Theoretically, there should be no substantial difference in parsing speed between them. Fur-

ther improvements will minimise the negative impact on speed whilst allowing for the novel features

that incremental parsing provides. This will allow for the 39% speed increase to be on top of the base

parsing speed.

We have applied the novel features produced during incremental parsing to only two components, the

POS tagger and the supertagger. Both have shown substantial accuracy improvements given the small

room for further gains. Many other applications would likely see a benefit from integrating these same

features produced by the incremental parser. Exploring the impact that these features have on other

parsing components and possible even separate NLP tasks would be a promising avenue of research.

Frontier pruning, as described in Chapter 8, is effective at improving parsing speed by removing portions

of the search space not likely needed in the parsing process. We believe the parsing speed can be

further improved by a form of self-training. By training the frontier pruning model on output from the

current frontier pruning model, pruning can be even more aggressive without causing further impacts on

83
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accuracy. This concept was explored by Kummerfeld et al. (2010) and has the potential to be used to

improve the frontier pruning model.

The core idea of tightly integrating the parser and other components can be extended significantly. Al-

though our work begins shows accuracy improvements due to our integration, even tighter integration is

possible by passing features between all major components. This would likely decrease the severity of

errors in the parsing pipeline and would be expected to significantly improve per component accuracy

and overall parsing accuracy.

9.2 Contributions

Our core contributions have addressed a number of outstanding questions in the field, specifically fo-

cused on incremental parsing and integration in the parsing pipeline.

We have extended the high-speed state-of-the-art C&C parser to support incremental parsing. As this

shift-reduce algorithm has a worst case exponential time complexity, we enabled practical shift-reduce

parsing by implementing the first graph-structured stack for CCG parsing in the literature. During evalua-

tion, we found our incremental parser produces output of near equivalent accuracy whilst only incurring

a 34% speed penalty. We conclude that with further engineering optimisations, the incremental CCG

parser could be directly competitive against the traditional C&C parser on both speed and accuracy.

Using the new capabilities our incremental parser, we tightly integrated parsing and tagging to allow for

improved accuracy. We have also explored the accuracy impact of errors early in the parsing pipeline

We find that, by providing the partial understanding of the sentence that the incremental parser has

generated as novel features, we can improve the accuracy of POS tagging and supertagging substantially.

With these novel features, we improve sentence level POS tagging accuracy by 3.40% and per token

supertagging accuracy by 2.00%.

We have also implemented a form of pruning that improves parsing speed by using the features produced

by the incremental parser. Frontier pruning allowed for a 39% speed improvement for the incremental

CCG parser with little impact on accuracy. This negated the 34% speed loss caused by replacing the CKY

algorithm with the shift-reduce algorithm in the incremental parser.

Thus, our work delivers a high speed state-of-the-art incremental CCG parser that enables improved

accuracy across other components in the parsing pipeline.
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Preliminary work on the shift-reduce algorithm, the graph-structured stack and frontier pruning is to be

published under the title Frontier Pruning for Shift-Reduce CCG Parsing at the Australasian Language

Technology Workshop in December 2011.
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