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Abstract

Stochastic ray tracing is one of the fundamental algorithms in computer graphics
for generating photo-realistic images. Stochastic ray tracing uses Monte Carlo
integration to solve the rendering equation. This presents a major drawback how-
ever: noise. To decrease the visible noise to an acceptable level is computationally
intensive.

In this project, we implement an unbiased Monte Carlo renderer as an experi-
mental testbed for evaluating improved sampling strategies, both theoretically and
practically motivated. We evaluate our results empirically, aiming to improve both
the image quality and speed of convergence for our test images. Our results show
that the improved sampling methods we use for rendering can give comparable
image quality over twenty times faster than naive Monte Carlo methods.

1 Introduction

Raytracing is one of the most elegant techniques in computer graphics for producing realistic images
of a given scene. The elegance comes from solving the light transport equation using Monte Carlo
methods, which approximates the radiance of a given pixel by simulating how light paths could
reach it in a physically accurate way. Many physical phenomena that are near impossible to compute
with other techniques can be trivially modelled using a raytracer. To accurately render these scenes
however is a computationally intensive task. For a high definition 1080p image, as might be rendered
by Pixar, the radiance of over 2 million pixels need to be computed, requiring millions or billions of
light paths depending on the complexity of the scene. Performing this naively is impractical, even
with advanced hardware such as general purpose graphical programming units (GPGPUs) which can
cast millions of rays per second. For the recent films Cars and Monsters University, each ray traced
frame took between 15 and 24 hours to render (Christensen et al., 2006). We implement an unbiased
Monte Carlo renderer and then evaluate various improved sampling strategies, both theoretically and
practically motivated, to see the impact on both image quality and speed.

2 Approach

To simulate the global reflection of light throughout a scene, we need to consider how light moves
around the scene. This is referred to as the light transport equation, described in Kajiya (1986).
The light transport equation states that the radiance of a point is the sum of the self-emitted radi-
ance (glow) and the reflected radiance. This value is then distributed according to the material’s
bidirectional reflectance distribution function (BRDF), which is detailed more in the next section.
Intuitively, the BRDF looks at the angle of the reflected light and the outgoing angle to decide how
much light should go in that direction. If the BRDF states the surface is perfectly mirror like, for
example, only very specific angles make a contribution to the reflected radiance.
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Lout(x, θo) = Lemit(x, θo) + Lreflected(x, θo) (1)

= Le(x, θo) +

∫
Li(x, θi)fr(x, θi, θo)|θi ·Nx|∂wi (2)

= emitted from object + reflected onto object (3)

The integral for the reflected light Lreflected is computed over the hemisphere of all possible in-
coming directions. As this is impossible to compute exactly, it is approximated using Monte Carlo
methods, turning the integral into a finite sum of samples. The primary issue that can occur is when
noise is too strong to give reasonable estimations as to the radiance. Whilst the expected value re-
mains accurate, the standard deviation (error) decreases by 1√

n
, where n is the number of samples.

To achieve a noise free image requires a large number of samples, especially if the scene is complex.

To improve this, various sampling improvements can be used, aiming to only perform sampling
in areas useful in determining the expected value. In the Methods section, we intermix both the
description of the sampling improvement and the impact on our resulting renders.

2.1 Motivation for using Monte Carlo methods for rendering

2.1.1 Rendering as a high dimensional problem

Performing rendering via sampling is a high dimensional problem with many potential complica-
tions. Even beyond solving the light transport equation, there are many other opportunities for Monte
Carlo methods in rendering. Solving the light transport equation itself involves computing the ex-
pected value over a two-dimensional hemisphere. Accurately modeling any physical phenomena
results in adding additional dimensions to the problem. If we perform anti-aliasing (supersampling
the pixels to prevent jagged edges), for example, we add another two dimensions to consideration.
Other similar effects, such as depth of field or motion blur, again mean averaging over an additional
set of dimensions.

Without Monte Carlo methods, incorporating each of these can be a complex and computationally
intensive problem. With Monte Carlo methods, all of these cases can be implemented with relative
simplicity, frequently requiring few modifications to the base rendering algorithm.

2.1.2 Accuracy of rendering

As opposed to many other uses of Monte Carlo methods, rendering requires relatively high accuracy.
The final output of the renderer is frequently presented to humans for viewing purposes without any
additional modification or processing. Without the proper number of samples, renders commonly
resemble vintage photographs.

Given this, one might fear that noise in the image would make the images aesthetically unusable,
especially due to the high dynamic range of the human eye and the slow convergence of Monte Carlo
methods in high dimensional domains. This is resolved in two separate ways. First, whilst humans
have high dynamic range, they have low absolute sensitivity, meaning that small changes in pixel
values are imperceptible. Second, the quality of a raytraced image can be improved progressively as
required. If the image is still too noisy, rendering can continue from that point, using more samples
to reduce the error, with the only penalty being that the image takes longer to render.

2.2 Test scenes

When testing our raytracer and the various sampling methods, we primarily focus on rendering
variations of the Cornell box which was created as a physical model in 1984 to serve as a base case
for various computer graphics tests. The Cornell box scene appears in many different variations1,
depending on what is being tested. Our scenes replace the boxes with spheres as our raytracer
currently only supports sphere primitives and we wanted to focus on the sampling methods rather
than the mechanics behind raytracing.

1For various other scenes, see Henrik Wann Jensen’s http://graphics.ucsd.edu/˜henrik/
images/cbox.html
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3 Improved Monte Carlo methods

With the high degree of accuracy required of rendering, continuing to sample from the image un-
til an acceptably noiseless result is produced is potentially a very computationally intensive task.
As such, we consider a variety of methods to improve our sampling, motivated by both the physical
properties of our scene and as well as our theoretical understanding of Monte Carlo sampling. Meth-
ods we implemented include importance sampling based on both the material of the surface being
considered (BRDF sampling) and the location of the light sources (explicit light sampling), Russian
roulette rejection sampling to probabilistically determine the path length, and adaptive sampling in
order to intelligently increase the sample rate at areas of higher variance. With these sampling im-
provements, we were able to render an accurate image over twenty times faster than a naive Monte
Carlo renderer.

3.1 Importance sampling using materials via BRDF sampling

When light hits a surface, it bounces away from it unless completely absorbed. Working out the
probability that it bounces in a given direction is a core question in accurate rendering. On some
surfaces, such as perfect mirrors, the direction is highly defined, deviating minimally from the law
of reflection2. As the surface becomes more diffuse however, such as a glossy imperfect mirror or a
piece of paper, the direction becomes more and more widely distributed.

The reflectance properties of an object are governed by the bidirectional reflectance distribution
function (BRDF) fr of that object’s material. The BRDF for a given real world object can be
measured using a goniophotometer, though empirical approximations are used for most computer
graphics applications. To calculate the BRDF, we use a given surface point x, the normal of the
surface Nx, the incoming direction θi, and the outgoing direction θo. Formally, this is defined as:

fr(x, θi, θo) =
∂Loutput(x, θo)

Linput(x, θi)|θi ·Nx|∂wi

Note that |θi ·Nx| is equal to the cosine angle between the two vectors.

Intuitively this maps out to:

Generating uniform random bounce directions is not the best method for approximating the integral
if we have an idea about the behavior of the integrated function. On some surfaces, such as a glossy
imperfect material, it makes the most sense to sample directions around the specular direction (in
other words, the mirror reflection direction), as most of the reflected light originates from these
directions. By generating sample rays according to the exact probability density function that defines
the object’s material, we are only sampling rays in the exact proportion to which their contributions
matter.

2The law of reflection states that when a ray of light reflects off a surface, the angle of incidence is equal to
the angle of reflection.
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Figure 1: Uniform sampling of the potential bounce directions (blue) versus importance sampling
using the object’s bidirectional reflectance distribution function (orange).

3.2 Importance sampling using explicit light sampling

In an unbiased Monte Carlo renderer, the light path being sampled must hit a luminaire (light source)
before it can make any contribution to the radiance of a given pixel. When the luminaire is small,
the probability that a random light path will intersect with it is highly unlikely, requiring a larger and
larger number of light paths to be sampled, most of which contribute nothing to the radiance. These
small but high intensity luminaires are not uncommon in computer graphics, with the most common
example being the sun, which although small dominates the light contribution to most scenes.

By exploiting our knowledge of the scene, specifically the location of these luminaires, we can
perform importance sampling towards the location of the light sources (Shirley et al., 1996). To do
this, we select a random point on any surface that emits light (luminaire). We then check whether
the given random point is visible from the hit position. If it isn’t, the light source is not visible,
resulting in no light contribution. If the random point is visible, we compute what portion of the
light is reflected towards the outgoing light path according to the BRDF function.

Selecting a random point is important. Imagine sampling from a sphere. If a single point was used,
such as the center, all shadows generated by that luminaire would be perfect hard projections of
the shapes. If multiple points are used, evenly distributed over the sphere, the shadows would have
a penumbra (partially shaded outer region of a cast shadow) related in size to the sphere. Taken
over an infinite number of samples, and assuming that the selected point from the luminaire was
generated truly at random, each of the points on the luminaire would be sampled evenly. When
there are multiple luminaires in the scene, we can select to check for illumination from a single
point from each of them or a single point from a randomly chosen luminaire. This has performance
implications in certain scenes. For the full mechanics and modifications required when sampling
from one or many luminaires, refer to appendix A.1.

Adding explicit light sampling additionally changes the way in which the light transport equation
works. On the first bounce of the light path where the path is directly from the image plane to the
scene (depth = 0), the light transport equation remains the same:

Lo(x, θo) = emitted from object + light from luminaires + reflected onto object

This ensures that the first bounce, those that feed directly into the image, register light sources seen
directly from the virtual camera as light sources. For all subsequent steps (depth > 0), the light
transport equation drops the first term:

Lo(x, θo) = light from luminaires + reflected onto object

This is required as otherwise double counting would occur. For a full description of why double
counting occurs, refer to appendix A.2.
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Figure 2: Impact of emitter sampling on speed and image quality. The image on the left used implicit
emitter sampling and was run for 20,000 iterations, taking 2,583 seconds. The images on the middle
and right used explicit emitter sampling and were run for 50 and 500 iterations. They took 9 and
101 seconds respectively, both resulting in a far higher quality image.

3.2.1 Rejection sampling: Russian roulette path termination

In a physically accurate model, an extremely bright light path may continue for hundreds or millions
of bounces. This presents a practical problem, as computing such a long path is intensive and
contributes little. If we truncated light paths after a fixed depth however, we would be introducing
bias into the Monte Carlo approximation.

A theoretically more sound technique is Russian roulette path termination, which introduces a path
termination probability q at each step. At each bounce in the light path, we stop traversing and return
zero with probability q, and continue sampling as usual otherwise. As it does not cut off any of the
subsequent paths in a deterministic way, but instead in a probabilistic way, we can compensate for
the probabilistic truncation, yielding an unbiased estimator. In our implementation, the probability
q is modified by the reflectance properties of the material currently being sampled. This results in a
high probability of termination if the light path hits a black surface (i.e. most of the light contribution
will be absorbed) and a low probability of termination if hitting a white surface.

Figure 3: Impact of Russian roulette sampling on speed and image quality. The first three images
have a maximum allowed light path length of 1, 2, and 3, taking 18 seconds, 31 seconds and 58
seconds respectively. The image on the right uses Russian roulette path termination, taking 83
seconds. Extreme bias can be seen in images of maximum allowed light path length of 1 and 2. In
more complex scenes, even max depths of 10 can result in extreme bias.

3.2.2 Variance reduction and adaptive sampling

Monte Carlo raytracers traditionally work by taking a specified number of samples for every pixel
in the image. Though this is guaranteed to produce a desirable result for large enough n, it can
lead to substantial computational effort being spent on pixels that do not require any additional
samples when that effort might have been better spent sampling from other pixels. For example, it
would make sense to take more samples for a particularly noisy pixel to get an accurate result when
compared to an entirely black pixel.
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Figure 4: The accompanying
image displays the relative vari-
ances of the pixels in the im-
age, with pixels of higher vari-
ance colored darker than those
of lighter variance. Here the
variance was measured solely
based on the history of the in-
dividual pixels.

Motivated by this understanding, we implemented adaptive sampling. Adaptive sampling is a
method which seeks to reduce variance in the image by increasing the number of samples that pixels
of high variance receive.

We considered two different measures for the variance of a pixel. First, we considered the variance
of the samples of an individual pixel and used rejection sampling to sample with higher probability
from pixels whose histories show a higher variance. Later, we considered the variance over neigh-
boring pixels, making the assumption that in most images, nearby pixels would demonstrate similar
tendencies. We again used rejection sampling to sample according to this variance. To produce ac-
curate results, we had an initial burn in period before we began sampling according to the adaptive
sampling criterion. This method allowed us to produce an image similar in quality to the original but
with more samples focused on areas deemed problematic. Though more sparsely sampling certain
areas did not decrease the quality of the image, we did not experience the gain in computational
efficiency we’d hoped for. The amount of overhead needed to store the histories of each pixel is
actually much larger than any gain from the adaptive sampling.

As adaptive sampling did not yield a computational advantage, we tried to test each pixel for con-
vergence by setting a hard threshold for the amount of variance allowed at a pixel and discontinuing
sampling from a pixel entirely should its variance fall below this value. With a long enough burn
in time and strict enough convergence criteria, this did produce results comparable to the original
image, but again, the overhead necessary to store all the samples stored was too large to be offset by
any of our computational gains.

3.2.3 Rendering realistic lenses with Monte Carlo

Monte Carlo rendering methods allows for trivial emulation of physical phenoma, including the
behaviour of camera lenses. We chose to implement features such as aperture size and focal length
in our raytracer to demonstrate the flexibility of our solution. The following figure shows a basic
diagram of how the rays first enter the scene when hitting a camera lens.

Rays originate at the aperture, a small hole through which light enters. If the aperture is small, the
rays are highly collimated (collimated light rays are near parallel); if it is large, the rays are more
spread out. If the aperture is large, the field of view will be larger, and vice versa. Figure 5 shows
the Cornell box with our standard aperture size (centered) as well as smaller apertures with flatter
fields of view (left) and larger apertures with wider fields of view.
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Figure 6: ’Cornell hallway’
showing the effect of a shallow
depth of field and short focal
length. Only the front of the
first ball is in focus and the rest
of the scene is blurred increas-
ingly past this point.

Figure 5: Impact of aperture size on field of view. The third image is taken using our standard
aperture size. The first and second images have aperture sizes of 1

4 and 1
2 of the original, and the

fourth and fifth images have aperture sizes of 2 and 4 times the original size, respectively.

From the aperture, the rays then pass through the image plane, which is where the pixel information
is gathered. As the rays travel towards the image, the rays for each pixel converge at a certain point,
called the focal point. The distance from the camera to this point is called the focal length. Images
at the focal point will be in focus, while images in front of or behind this point will be blurred.
We accomplished this using Monte Carlo by randomly jittering the origin of each ray at each pixel.
The direction of each ray is then calculated so that all of the pixel’s rays converge after traveling a
distance equivalent to the focal length. The aperture and the focal length are related by the cameras
depth of field, which is the distance between the nearest and farthest objects in a scene that appear
in focus. For smaller apertures, the rays are collimated, or less spread out, meaning the images are
fairly well resolved even far from the focal point, resulting in a larger depth of field. The opposite
is true of larger apertures, which have a very narrow depth of field. In Figure 7, we have created a
scene of a hallway of balls, employing a large aperture size and short focal length. As a result, only
the front of the very ball is in focus, and the rest of the image is blurred.

4 Discussion

4.1 Complications from Metropolis Light Transport

We originally intended to implement Metropolis Light Transport (MLT), as described in Veach and
Guibas (1997), an algorithm which uses Metropolis-Hastings sampling to explore the space of light
paths, biasing towards light sources to effectively approximate the light rendering equation with
fewer samples. In contrast with a traditional Monte Carlo raytracer, the MLT algorithm works not
by firing a new ray into the image for each new sample but by carefully mutating a currently existing
light path to produce a sequence of paths. These mutations must be carefully constructed in order to
ensure a low variance, low auto-correlation, stratified sequence of samples with a high acceptance
rate. Many methods have been presented to handle bias occurring due to mutations, including Kele-
men et al. (2002) and Cline and Egbert (2005), but all of them require extreme complexity and care.
If they are properly implemented however, Ashikhmin et al. (2001) shows that the asymptotic time
complexity is no worse than uncorrelated Monte Carlo methods such as path tracing.

When we initially worked on MLT, much of our time was focused on the mutation functions and our
acceptance probabilities, paying special attention to the Hasting term of the Metropolis-Hastings ac-
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ceptance ratio. Accurately calculating this ratio requires computing the probability of generating the
new mutated path from our starting path, which includes computing both the probability of deleting
the deleted subpath, xs . . . xt, from the starting path as well as the probability that the vertices of the
new path would be chosen to replace them. The latter additionally includes computing all the ways
in which the new vertices could split between subpaths from xt to xs. This mathematically intensive
task is a cause of frustration even for experts (Hoberock and Hart, 2010) and we eventually decided
that it would be too intensive and error prone to implement in the time we had available.

4.2 Implementation and code

The renderer we developed, Montelight, was implemented from scratch in C++. We initially in-
tended to write Montelight in Python, allowing for rapid prototyping and a focus on the stochastic
optimizations rather than engineering, but as features were added, and larger experiments attempted,
the slow speed of Python became a problem. We attempted to rectify this by using PyPy, a fast,
compliant alternative implementation of the Python language. Whilst PyPy was 15 times faster than
standard Python, it was still too slow compared to a low level implementation in C or C++. Re-
implementing the project in C++ gave us an additional 16 times speed boost over PyPy. We believe
this shows that high level languages, such as Python or R, are not appropriate for solving computa-
tionally intensive problems using Monte Carlo methods, and that other speed optimized languages
such as C, C++, or Julia should be used.

The source code available at https://github.com/Smerity/montelight-cpp includes
instructions for both compiling and running the program. Other than requiring a recent C++11
compiler, such as g++ or clang, our renderer does not use any other libraries or extensions.

4.3 Future Work

This work could be extended to consider a large number of interesting problems, both in modeling
complex physical phenomena efficiently and also improving the speed our the raytracer. Numer-
ous engineering optimizations, such as octrees for ray-intersection calculations or complex surface
rendering, were ignored to keep focus on the stochastic optimization aspect. More complex materi-
als could also be implemented, including mirrors, metallic surfaces, and dielectric surfaces such as
glass.

5 Conclusion

In this project, we implemented a stochastic raytracer to serve as a platform for experimenting
with various Monte Carlo methods. Using BRDF importance sampling, explicit light sampling, and
rejection sampling, we were able to substantially improve both the speed and quality of our rendered
images, whilst not compromising quality. Our results show that the improved sampling methods we
use for rendering can give comparable image quality over twenty times faster than naive Monte
Carlo methods without restricting the scenes that can be tackled.
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A Details on explicit light sampling

A.1 Efficiently sampling many luminaires

If one random point is sampled from each of the luminaires in the scene, no reweighting is necessary
to keep a proper distribution. A key question is whether we can select how many of the luminaires to
be sampled at each stage of the light path. This can be useful as sampling |luminaires| rays at each
stage of the light path can be computationally intensive, especially when there are a large number
of luminaires, of which many of these luminaires may not be visible at all. We might find that we
can save computational time by only sampling one randomly selected luminaire at each stage of
the light path and instead performing more samples. Care must be taken to ensure we do not skew
the expected mean. This is as, when sampled to infinity, each of the luminaires must be sampled
evenly, and the expected mean must be equal to what it would have been otherwise. If we select
only one of the luminaires randomly, the light contribution must be multiplied by |luminaires|, as
the probability of sampling from that luminaire would be 1

|luminaires| .

Intuitively, we can model this as a problem where we wish to find the expected mean of a random
throw of two independently weighted dice. The standard method would be to take n samples, where
a sample is throwing both the dice, sum the scores, and then compute the mean over those samples.
Imagine however that we could only throw one dice at a time, and that the dice was selected ran-
domly. If we could only throw one dice at a time, with the dice randomly chosen, we could still
compute the expected mean when both dice are thrown by taking (sum(samples)× 2)/n.

A.2 Double counting

In order to prevent double counting of any luminaires, we must remove the first term of the light
transport equation when performing explicit light sampling. The reason for this is not intuitively
obvious but can be reasoned through.

Imagine a scenario in which we want to compute the radiance at a given point x and there is a single
luminaire l visible from that point. If we perform explicit light sampling, we have the contribution
from l to x. If we perform the exact integral over the hemisphere of reflected light, we also consider
the contribution from l to x, as one of the reflected rays is the exact computation performed via
explicit light sampling. This means that the contribution Lemit(x, θo) is added by both explicit light
sampling and the integral of the reflected light. To maintain the correct solution, one of these must
be removed. This is most effective when removing the first term of the light transport equation
as importance sampling of luminaires via explicit light sampling will be far more efficient than
calculating the equivalent sum via reflected light.
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